transformer.py 25.3 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np

import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.dygraph import Embedding, LayerNorm, Linear, Layer, to_variable
from paddle.fluid.dygraph.learning_rate_scheduler import LearningRateDecay
23
from model import Model, CrossEntropy, Loss
G
guosheng 已提交
24 25 26 27 28 29 30 31 32 33 34


def position_encoding_init(n_position, d_pos_vec):
    """
    Generate the initial values for the sinusoid position encoding table.
    """
    channels = d_pos_vec
    position = np.arange(n_position)
    num_timescales = channels // 2
    log_timescale_increment = (np.log(float(1e4) / float(1)) /
                               (num_timescales - 1))
35 36 37 38
    inv_timescales = np.exp(np.arange(
        num_timescales)) * -log_timescale_increment
    scaled_time = np.expand_dims(position, 1) * np.expand_dims(inv_timescales,
                                                               0)
G
guosheng 已提交
39 40 41 42 43 44 45 46 47 48
    signal = np.concatenate([np.sin(scaled_time), np.cos(scaled_time)], axis=1)
    signal = np.pad(signal, [[0, 0], [0, np.mod(channels, 2)]], 'constant')
    position_enc = signal
    return position_enc.astype("float32")


class NoamDecay(LearningRateDecay):
    """
    learning rate scheduler
    """
49

G
guosheng 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    def __init__(self,
                 d_model,
                 warmup_steps,
                 static_lr=2.0,
                 begin=1,
                 step=1,
                 dtype='float32'):
        super(NoamDecay, self).__init__(begin, step, dtype)
        self.d_model = d_model
        self.warmup_steps = warmup_steps
        self.static_lr = static_lr

    def step(self):
        a = self.create_lr_var(self.step_num**-0.5)
        b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
        lr_value = (self.d_model**-0.5) * layers.elementwise_min(
            a, b) * self.static_lr
        return lr_value


class PrePostProcessLayer(Layer):
    """
    PrePostProcessLayer
    """
74

G
guosheng 已提交
75 76 77 78 79 80 81 82 83 84
    def __init__(self, process_cmd, d_model, dropout_rate):
        super(PrePostProcessLayer, self).__init__()
        self.process_cmd = process_cmd
        self.functors = []
        for cmd in self.process_cmd:
            if cmd == "a":  # add residual connection
                self.functors.append(lambda x, y: x + y if y else x)
            elif cmd == "n":  # add layer normalization
                self.functors.append(
                    self.add_sublayer(
85 86
                        "layer_norm_%d" % len(
                            self.sublayers(include_sublayers=False)),
G
guosheng 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
                        LayerNorm(
                            normalized_shape=d_model,
                            param_attr=fluid.ParamAttr(
                                initializer=fluid.initializer.Constant(1.)),
                            bias_attr=fluid.ParamAttr(
                                initializer=fluid.initializer.Constant(0.)))))
            elif cmd == "d":  # add dropout
                self.functors.append(lambda x: layers.dropout(
                    x, dropout_prob=dropout_rate, is_test=False)
                                     if dropout_rate else x)

    def forward(self, x, residual=None):
        for i, cmd in enumerate(self.process_cmd):
            if cmd == "a":
                x = self.functors[i](x, residual)
            else:
                x = self.functors[i](x)
        return x


class MultiHeadAttention(Layer):
    """
    Multi-Head Attention
    """
111

G
guosheng 已提交
112 113 114 115 116 117 118
    def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.):
        super(MultiHeadAttention, self).__init__()
        self.n_head = n_head
        self.d_key = d_key
        self.d_value = d_value
        self.d_model = d_model
        self.dropout_rate = dropout_rate
119 120 121 122 123 124 125 126
        self.q_fc = Linear(
            input_dim=d_model, output_dim=d_key * n_head, bias_attr=False)
        self.k_fc = Linear(
            input_dim=d_model, output_dim=d_key * n_head, bias_attr=False)
        self.v_fc = Linear(
            input_dim=d_model, output_dim=d_value * n_head, bias_attr=False)
        self.proj_fc = Linear(
            input_dim=d_value * n_head, output_dim=d_model, bias_attr=False)
G
guosheng 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

    def _prepare_qkv(self, queries, keys, values, cache=None):
        if keys is None:  # self-attention
            keys, values = queries, queries
            static_kv = False
        else:  # cross-attention
            static_kv = True

        q = self.q_fc(queries)
        q = layers.reshape(x=q, shape=[0, 0, self.n_head, self.d_key])
        q = layers.transpose(x=q, perm=[0, 2, 1, 3])

        if cache is not None and static_kv and "static_k" in cache:
            # for encoder-decoder attention in inference and has cached
            k = cache["static_k"]
            v = cache["static_v"]
        else:
            k = self.k_fc(keys)
            v = self.v_fc(values)
            k = layers.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
            k = layers.transpose(x=k, perm=[0, 2, 1, 3])
            v = layers.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
            v = layers.transpose(x=v, perm=[0, 2, 1, 3])

        if cache is not None:
            if static_kv and not "static_k" in cache:
                # for encoder-decoder attention in inference and has not cached
                cache["static_k"], cache["static_v"] = k, v
            elif not static_kv:
                # for decoder self-attention in inference
                cache_k, cache_v = cache["k"], cache["v"]
                k = layers.concat([cache_k, k], axis=2)
                v = layers.concat([cache_v, v], axis=2)
                cache["k"], cache["v"] = k, v

        return q, k, v

    def forward(self, queries, keys, values, attn_bias, cache=None):
        # compute q ,k ,v
        q, k, v = self._prepare_qkv(queries, keys, values, cache)

        # scale dot product attention
169 170
        product = layers.matmul(
            x=q, y=k, transpose_y=True, alpha=self.d_model**-0.5)
G
guosheng 已提交
171 172 173 174
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
        if self.dropout_rate:
175 176
            weights = layers.dropout(
                weights, dropout_prob=self.dropout_rate, is_test=False)
G
guosheng 已提交
177 178 179 180 181 182 183 184 185 186 187

        out = layers.matmul(weights, v)

        # combine heads
        out = layers.transpose(out, perm=[0, 2, 1, 3])
        out = layers.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.proj_fc(out)
        return out

G
guosheng 已提交
188 189 190 191 192 193 194 195 196
    def cal_kv(self, keys, values):
        k = self.k_fc(keys)
        v = self.v_fc(values)
        k = layers.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
        k = layers.transpose(x=k, perm=[0, 2, 1, 3])
        v = layers.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
        v = layers.transpose(x=v, perm=[0, 2, 1, 3])
        return k, v

G
guosheng 已提交
197 198 199 200 201

class FFN(Layer):
    """
    Feed-Forward Network
    """
202

G
guosheng 已提交
203 204 205
    def __init__(self, d_inner_hid, d_model, dropout_rate):
        super(FFN, self).__init__()
        self.dropout_rate = dropout_rate
206 207
        self.fc1 = Linear(
            input_dim=d_model, output_dim=d_inner_hid, act="relu")
G
guosheng 已提交
208 209 210 211 212
        self.fc2 = Linear(input_dim=d_inner_hid, output_dim=d_model)

    def forward(self, x):
        hidden = self.fc1(x)
        if self.dropout_rate:
213 214
            hidden = layers.dropout(
                hidden, dropout_prob=self.dropout_rate, is_test=False)
G
guosheng 已提交
215 216 217 218 219 220 221 222
        out = self.fc2(hidden)
        return out


class EncoderLayer(Layer):
    """
    EncoderLayer
    """
223

G
guosheng 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    def __init__(self,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd="n",
                 postprocess_cmd="da"):

        super(EncoderLayer, self).__init__()

        self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
                                            attention_dropout)
        self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

        self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
        self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

    def forward(self, enc_input, attn_bias):
252 253
        attn_output = self.self_attn(
            self.preprocesser1(enc_input), None, None, attn_bias)
G
guosheng 已提交
254 255 256 257 258 259 260 261 262 263 264
        attn_output = self.postprocesser1(attn_output, enc_input)

        ffn_output = self.ffn(self.preprocesser2(attn_output))
        ffn_output = self.postprocesser2(ffn_output, attn_output)
        return ffn_output


class Encoder(Layer):
    """
    encoder
    """
265

G
guosheng 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    def __init__(self,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd="n",
                 postprocess_cmd="da"):

        super(Encoder, self).__init__()

        self.encoder_layers = list()
        for i in range(n_layer):
            self.encoder_layers.append(
                self.add_sublayer(
                    "layer_%d" % i,
                    EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid,
                                 prepostprocess_dropout, attention_dropout,
                                 relu_dropout, preprocess_cmd,
                                 postprocess_cmd)))
        self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
                                             prepostprocess_dropout)

    def forward(self, enc_input, attn_bias):
        for encoder_layer in self.encoder_layers:
            enc_output = encoder_layer(enc_input, attn_bias)
            enc_input = enc_output

        return self.processer(enc_output)


class Embedder(Layer):
    """
    Word Embedding + Position Encoding
    """
305

G
guosheng 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    def __init__(self, vocab_size, emb_dim, bos_idx=0):
        super(Embedder, self).__init__()

        self.word_embedder = Embedding(
            size=[vocab_size, emb_dim],
            padding_idx=bos_idx,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Normal(0., emb_dim**-0.5)))

    def forward(self, word):
        word_emb = self.word_embedder(word)
        return word_emb


class WrapEncoder(Layer):
    """
    embedder + encoder
    """
324

G
guosheng 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    def __init__(self, src_vocab_size, max_length, n_layer, n_head, d_key,
                 d_value, d_model, d_inner_hid, prepostprocess_dropout,
                 attention_dropout, relu_dropout, preprocess_cmd,
                 postprocess_cmd, word_embedder):
        super(WrapEncoder, self).__init__()

        self.emb_dropout = prepostprocess_dropout
        self.emb_dim = d_model
        self.word_embedder = word_embedder
        self.pos_encoder = Embedding(
            size=[max_length, self.emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    position_encoding_init(max_length, self.emb_dim)),
                trainable=False))

        self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
                               d_inner_hid, prepostprocess_dropout,
                               attention_dropout, relu_dropout, preprocess_cmd,
                               postprocess_cmd)

    def forward(self, src_word, src_pos, src_slf_attn_bias):
        word_emb = self.word_embedder(src_word)
        word_emb = layers.scale(x=word_emb, scale=self.emb_dim**0.5)
        pos_enc = self.pos_encoder(src_pos)
        pos_enc.stop_gradient = True
        emb = word_emb + pos_enc
352 353 354
        enc_input = layers.dropout(
            emb, dropout_prob=self.emb_dropout,
            is_test=False) if self.emb_dropout else emb
G
guosheng 已提交
355 356 357 358 359 360 361 362 363

        enc_output = self.encoder(enc_input, src_slf_attn_bias)
        return enc_output


class DecoderLayer(Layer):
    """
    decoder
    """
364

G
guosheng 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    def __init__(self,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd="n",
                 postprocess_cmd="da"):
        super(DecoderLayer, self).__init__()

        self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
                                            attention_dropout)
        self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

        self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.cross_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
                                             attention_dropout)
        self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

        self.preprocesser3 = PrePostProcessLayer(preprocess_cmd, d_model,
                                                 prepostprocess_dropout)
        self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
        self.postprocesser3 = PrePostProcessLayer(postprocess_cmd, d_model,
                                                  prepostprocess_dropout)

    def forward(self,
                dec_input,
                enc_output,
                self_attn_bias,
                cross_attn_bias,
                cache=None):
404 405
        self_attn_output = self.self_attn(
            self.preprocesser1(dec_input), None, None, self_attn_bias, cache)
G
guosheng 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        self_attn_output = self.postprocesser1(self_attn_output, dec_input)

        cross_attn_output = self.cross_attn(
            self.preprocesser2(self_attn_output), enc_output, enc_output,
            cross_attn_bias, cache)
        cross_attn_output = self.postprocesser2(cross_attn_output,
                                                self_attn_output)

        ffn_output = self.ffn(self.preprocesser3(cross_attn_output))
        ffn_output = self.postprocesser3(ffn_output, cross_attn_output)

        return ffn_output


class Decoder(Layer):
    """
    decoder
    """
424

G
guosheng 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    def __init__(self, n_layer, n_head, d_key, d_value, d_model, d_inner_hid,
                 prepostprocess_dropout, attention_dropout, relu_dropout,
                 preprocess_cmd, postprocess_cmd):
        super(Decoder, self).__init__()

        self.decoder_layers = list()
        for i in range(n_layer):
            self.decoder_layers.append(
                self.add_sublayer(
                    "layer_%d" % i,
                    DecoderLayer(n_head, d_key, d_value, d_model, d_inner_hid,
                                 prepostprocess_dropout, attention_dropout,
                                 relu_dropout, preprocess_cmd,
                                 postprocess_cmd)))
        self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
                                             prepostprocess_dropout)

    def forward(self,
                dec_input,
                enc_output,
                self_attn_bias,
                cross_attn_bias,
                caches=None):
        for i, decoder_layer in enumerate(self.decoder_layers):
            dec_output = decoder_layer(dec_input, enc_output, self_attn_bias,
450 451
                                       cross_attn_bias, None
                                       if caches is None else caches[i])
G
guosheng 已提交
452 453 454 455
            dec_input = dec_output

        return self.processer(dec_output)

G
guosheng 已提交
456 457 458 459 460 461 462 463
    def prepare_static_cache(self, enc_output):
        return [
            dict(
                zip(("static_k", "static_v"),
                    decoder_layer.cross_attn.cal_kv(enc_output, enc_output)))
            for decoder_layer in self.decoder_layers
        ]

G
guosheng 已提交
464 465 466 467 468

class WrapDecoder(Layer):
    """
    embedder + decoder
    """
469

G
guosheng 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    def __init__(self, trg_vocab_size, max_length, n_layer, n_head, d_key,
                 d_value, d_model, d_inner_hid, prepostprocess_dropout,
                 attention_dropout, relu_dropout, preprocess_cmd,
                 postprocess_cmd, share_input_output_embed, word_embedder):
        super(WrapDecoder, self).__init__()

        self.emb_dropout = prepostprocess_dropout
        self.emb_dim = d_model
        self.word_embedder = word_embedder
        self.pos_encoder = Embedding(
            size=[max_length, self.emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    position_encoding_init(max_length, self.emb_dim)),
                trainable=False))

        self.decoder = Decoder(n_layer, n_head, d_key, d_value, d_model,
                               d_inner_hid, prepostprocess_dropout,
                               attention_dropout, relu_dropout, preprocess_cmd,
                               postprocess_cmd)

        if share_input_output_embed:
            self.linear = lambda x: layers.matmul(x=x,
                                                  y=self.word_embedder.
                                                  word_embedder.weight,
                                                  transpose_y=True)
        else:
497 498
            self.linear = Linear(
                input_dim=d_model, output_dim=trg_vocab_size, bias_attr=False)
G
guosheng 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511

    def forward(self,
                trg_word,
                trg_pos,
                trg_slf_attn_bias,
                trg_src_attn_bias,
                enc_output,
                caches=None):
        word_emb = self.word_embedder(trg_word)
        word_emb = layers.scale(x=word_emb, scale=self.emb_dim**0.5)
        pos_enc = self.pos_encoder(trg_pos)
        pos_enc.stop_gradient = True
        emb = word_emb + pos_enc
512 513 514
        dec_input = layers.dropout(
            emb, dropout_prob=self.emb_dropout,
            is_test=False) if self.emb_dropout else emb
G
guosheng 已提交
515 516 517 518
        dec_output = self.decoder(dec_input, enc_output, trg_slf_attn_bias,
                                  trg_src_attn_bias, caches)
        dec_output = layers.reshape(
            dec_output,
519
            shape=[-1, dec_output.shape[-1]], )
G
guosheng 已提交
520 521 522 523 524 525 526 527 528 529
        logits = self.linear(dec_output)
        return logits


class CrossEntropyCriterion(Loss):
    def __init__(self, label_smooth_eps):
        super(CrossEntropyCriterion, self).__init__()
        self.label_smooth_eps = label_smooth_eps

    def forward(self, outputs, labels):
530
        predict, (label, weights) = outputs[0], labels
G
guosheng 已提交
531
        if self.label_smooth_eps:
532 533 534 535
            label = layers.label_smooth(
                label=layers.one_hot(
                    input=label, depth=predict.shape[-1]),
                epsilon=self.label_smooth_eps)
G
guosheng 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

        cost = layers.softmax_with_cross_entropy(
            logits=predict,
            label=label,
            soft_label=True if self.label_smooth_eps else False)
        weighted_cost = cost * weights
        sum_cost = layers.reduce_sum(weighted_cost)
        token_num = layers.reduce_sum(weights)
        token_num.stop_gradient = True
        avg_cost = sum_cost / token_num
        return avg_cost


class Transformer(Model):
    """
    model
    """
553

G
guosheng 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
    def __init__(self,
                 src_vocab_size,
                 trg_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 weight_sharing,
                 bos_id=0,
                 eos_id=1):
        super(Transformer, self).__init__()
573 574 575 576 577 578
        src_word_embedder = Embedder(
            vocab_size=src_vocab_size, emb_dim=d_model, bos_idx=bos_id)
        self.encoder = WrapEncoder(
            src_vocab_size, max_length, n_layer, n_head, d_key, d_value,
            d_model, d_inner_hid, prepostprocess_dropout, attention_dropout,
            relu_dropout, preprocess_cmd, postprocess_cmd, src_word_embedder)
G
guosheng 已提交
579 580 581 582 583 584
        if weight_sharing:
            assert src_vocab_size == trg_vocab_size, (
                "Vocabularies in source and target should be same for weight sharing."
            )
            trg_word_embedder = src_word_embedder
        else:
585 586 587 588 589 590 591
            trg_word_embedder = Embedder(
                vocab_size=trg_vocab_size, emb_dim=d_model, bos_idx=bos_id)
        self.decoder = WrapDecoder(
            trg_vocab_size, max_length, n_layer, n_head, d_key, d_value,
            d_model, d_inner_hid, prepostprocess_dropout, attention_dropout,
            relu_dropout, preprocess_cmd, postprocess_cmd, weight_sharing,
            trg_word_embedder)
G
guosheng 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

        self.trg_vocab_size = trg_vocab_size
        self.n_layer = n_layer
        self.n_head = n_head
        self.d_key = d_key
        self.d_value = d_value

    def forward(self, src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
                trg_slf_attn_bias, trg_src_attn_bias):
        enc_output = self.encoder(src_word, src_pos, src_slf_attn_bias)
        predict = self.decoder(trg_word, trg_pos, trg_slf_attn_bias,
                               trg_src_attn_bias, enc_output)
        return predict


G
guosheng 已提交
607
from rnn_api import TransformerBeamSearchDecoder, DynamicDecode
G
guosheng 已提交
608 609


G
guosheng 已提交
610 611 612 613 614
class TransfomerCell(object):
    """
    Let inputs=(trg_word, trg_pos), states=cache to make Transformer can be
    used as RNNCell
    """
615

G
guosheng 已提交
616 617 618 619 620 621 622 623 624 625 626 627
    def __init__(self, decoder):
        self.decoder = decoder

    def __call__(self, inputs, states, trg_src_attn_bias, enc_output,
                 static_caches):
        trg_word, trg_pos = inputs
        for cache, static_cache in zip(states, static_caches):
            cache.update(static_cache)
        logits = self.decoder(trg_word, trg_pos, None, trg_src_attn_bias,
                              enc_output, states)
        new_states = [{"k": cache["k"], "v": cache["v"]} for cache in states]
        return logits, new_states
G
guosheng 已提交
628 629


G
guosheng 已提交
630 631 632 633
class InferTransformer(Transformer):
    """
    model for prediction
    """
634

G
guosheng 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    def __init__(self,
                 src_vocab_size,
                 trg_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 weight_sharing,
                 bos_id=0,
                 eos_id=1,
                 beam_size=4,
                 max_out_len=256):
        args = locals()
        args.pop("self")
        self.beam_size = args.pop("beam_size")
        self.max_out_len = args.pop("max_out_len")
        super(InferTransformer, self).__init__(**args)
        cell = TransfomerCell(self.decoder)
        self.beam_search_decoder = DynamicDecode(
662 663 664 665
            TransformerBeamSearchDecoder(
                cell, bos_id, eos_id, beam_size, var_dim_in_state=2),
            max_out_len,
            is_test=True)
G
guosheng 已提交
666 667 668 669

    def forward(self, src_word, src_pos, src_slf_attn_bias, trg_src_attn_bias):
        enc_output = self.encoder(src_word, src_pos, src_slf_attn_bias)
        ## init states (caches) for transformer, need to be updated according to selected beam
G
guosheng 已提交
670
        caches = [{
671
            "k": layers.fill_constant_batch_size_like(
G
guosheng 已提交
672 673
                input=enc_output,
                shape=[-1, self.n_head, 0, self.d_key],
G
guosheng 已提交
674 675
                dtype=enc_output.dtype,
                value=0),
676
            "v": layers.fill_constant_batch_size_like(
G
guosheng 已提交
677 678
                input=enc_output,
                shape=[-1, self.n_head, 0, self.d_value],
G
guosheng 已提交
679 680 681
                dtype=enc_output.dtype,
                value=0),
        } for i in range(self.n_layer)]
G
guosheng 已提交
682 683 684 685
        enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
            enc_output, self.beam_size)
        trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
            trg_src_attn_bias, self.beam_size)
686 687 688 689 690 691
        static_caches = self.decoder.decoder.prepare_static_cache(enc_output)
        rs, _ = self.beam_search_decoder(
            inits=caches,
            enc_output=enc_output,
            trg_src_attn_bias=trg_src_attn_bias,
            static_caches=static_caches)
G
guosheng 已提交
692
        return rs