# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * is_predict = get_config_arg("is_predict", bool, False) if not is_predict: args = {'meta': 'data/mean.meta'} define_py_data_sources2( train_list='data/train.list', test_list='data/test.list', module='dataprovider', obj='process', args={'mean_path': 'data/mean.meta'}) settings( batch_size=128, learning_rate=0.1 / 128.0, learning_rate_decay_a=0.1, learning_rate_decay_b=50000 * 140, learning_rate_schedule='discexp', learning_method=MomentumOptimizer(0.9), regularization=L2Regularization(0.0002 * 128)) def conv_bn_layer(input, ch_out, filter_size, stride, padding, active_type=ReluActivation(), ch_in=None): tmp = img_conv_layer( input=input, filter_size=filter_size, num_channels=ch_in, num_filters=ch_out, stride=stride, padding=padding, act=LinearActivation(), bias_attr=False) return batch_norm_layer(input=tmp, act=active_type) def shortcut(ipt, n_in, n_out, stride): if n_in != n_out: print("n_in != n_out") return conv_bn_layer(ipt, n_out, 1, stride, 0, LinearActivation()) else: return ipt def basicblock(ipt, ch_out, stride): ch_in = ipt.num_filters tmp = conv_bn_layer(ipt, ch_out, 3, stride, 1) tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, LinearActivation()) short = shortcut(ipt, ch_in, ch_out, stride) return addto_layer(input=[tmp, short], act=ReluActivation()) def bottleneck(ipt, ch_out, stride): ch_in = ipt.num_filter tmp = conv_bn_layer(ipt, ch_out, 1, stride, 0) tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1) tmp = conv_bn_layer(tmp, ch_out * 4, 1, 1, 0, LinearActivation()) short = shortcut(ipt, ch_in, ch_out * 4, stride) return addto_layer(input=[tmp, short], act=ReluActivation()) def layer_warp(block_func, ipt, features, count, stride): tmp = block_func(ipt, features, stride) for i in range(1, count): tmp = block_func(tmp, features, 1) return tmp def resnet_imagenet(ipt, depth=50): cfg = { 18: ([2, 2, 2, 1], basicblock), 34: ([3, 4, 6, 3], basicblock), 50: ([3, 4, 6, 3], bottleneck), 101: ([3, 4, 23, 3], bottleneck), 152: ([3, 8, 36, 3], bottleneck) } stages, block_func = cfg[depth] tmp = conv_bn_layer( ipt, ch_in=3, ch_out=64, filter_size=7, stride=2, padding=3) tmp = img_pool_layer(input=tmp, pool_size=3, stride=2) tmp = layer_warp(block_func, tmp, 64, stages[0], 1) tmp = layer_warp(block_func, tmp, 128, stages[1], 2) tmp = layer_warp(block_func, tmp, 256, stages[2], 2) tmp = layer_warp(block_func, tmp, 512, stages[3], 2) tmp = img_pool_layer( input=tmp, pool_size=7, stride=1, pool_type=AvgPooling()) tmp = fc_layer(input=tmp, size=1000, act=SoftmaxActivation()) return tmp def resnet_cifar10(ipt, depth=32): #depth should be one of 20, 32, 44, 56, 110, 1202 assert (depth - 2) % 6 == 0 n = (depth - 2) / 6 nStages = {16, 64, 128} conv1 = conv_bn_layer( ipt, ch_in=3, ch_out=16, filter_size=3, stride=1, padding=1) res1 = layer_warp(basicblock, conv1, 16, n, 1) res2 = layer_warp(basicblock, res1, 32, n, 2) res3 = layer_warp(basicblock, res2, 64, n, 2) pool = img_pool_layer( input=res3, pool_size=8, stride=1, pool_type=AvgPooling()) return pool datadim = 3 * 32 * 32 classdim = 10 data = data_layer(name='image', size=datadim) net = resnet_cifar10(data, depth=32) out = fc_layer(input=net, size=10, act=SoftmaxActivation()) if not is_predict: lbl = data_layer(name="label", size=classdim) outputs(classification_cost(input=out, label=lbl)) else: outputs(out)