# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * is_predict = get_config_arg("is_predict", bool, False) if not is_predict: define_py_data_sources2( train_list='data/train.list', test_list='data/test.list', module='dataprovider', obj='process', args={'mean_path': 'data/mean.meta'}) settings( batch_size=128, learning_rate=0.1 / 128.0, learning_rate_decay_a=0.1, learning_rate_decay_b=50000 * 100, learning_rate_schedule='discexp', learning_method=MomentumOptimizer(0.9), regularization=L2Regularization(0.0005 * 128), ) def vgg_bn_drop(input): def conv_block(ipt, num_filter, groups, dropouts, num_channels=None): return img_conv_group( input=ipt, num_channels=num_channels, pool_size=2, pool_stride=2, conv_num_filter=[num_filter] * groups, conv_filter_size=3, conv_act=ReluActivation(), conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, pool_type=MaxPooling()) conv1 = conv_block(input, 64, 2, [0.3, 0], 3) conv2 = conv_block(conv1, 128, 2, [0.4, 0]) conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) drop = dropout_layer(input=conv5, dropout_rate=0.5) fc1 = fc_layer(input=drop, size=512, act=LinearActivation()) bn = batch_norm_layer( input=fc1, act=ReluActivation(), layer_attr=ExtraAttr(drop_rate=0.5)) fc2 = fc_layer(input=bn, size=512, act=LinearActivation()) return fc2 datadim = 3 * 32 * 32 classdim = 10 data = data_layer(name='image', size=datadim) net = vgg_bn_drop(data) out = fc_layer(input=net, size=classdim, act=SoftmaxActivation()) if not is_predict: lbl = data_layer(name="label", size=classdim) cost = classification_cost(input=out, label=lbl) outputs(cost) else: outputs(out)