# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import sys import gzip import paddle.v2 as paddle from vgg import vgg_bn_drop from resnet import resnet_cifar10 def main(): datadim = 3 * 32 * 32 classdim = 10 # PaddlePaddle init paddle.init(use_gpu=False, trainer_count=1) image = paddle.layer.data( name="image", type=paddle.data_type.dense_vector(datadim)) # Add neural network config # option 1. resnet # net = resnet_cifar10(image, depth=32) # option 2. vgg net = vgg_bn_drop(image) out = paddle.layer.fc( input=net, size=classdim, act=paddle.activation.Softmax()) lbl = paddle.layer.data( name="label", type=paddle.data_type.integer_value(classdim)) cost = paddle.layer.classification_cost(input=out, label=lbl) # Create parameters parameters = paddle.parameters.create(cost) # Create optimizer momentum_optimizer = paddle.optimizer.Momentum( momentum=0.9, regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128), learning_rate=0.1 / 128.0, learning_rate_decay_a=0.1, learning_rate_decay_b=50000 * 100, learning_rate_schedule='discexp', batch_size=128) # End batch and end pass event handler def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: print "\nPass %d, Batch %d, Cost %f, %s" % ( event.pass_id, event.batch_id, event.cost, event.metrics) else: sys.stdout.write('.') sys.stdout.flush() if isinstance(event, paddle.event.EndPass): # save parameters with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f: parameters.to_tar(f) result = trainer.test( reader=paddle.batch( paddle.dataset.cifar.test10(), batch_size=128), feeding={'image': 0, 'label': 1}) print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics) # Create trainer trainer = paddle.trainer.SGD( cost=cost, parameters=parameters, update_equation=momentum_optimizer) trainer.train( reader=paddle.batch( paddle.reader.shuffle( paddle.dataset.cifar.train10(), buf_size=50000), batch_size=128), num_passes=1, event_handler=event_handler, feeding={'image': 0, 'label': 1}) # inference from PIL import Image import numpy as np def load_image(file): im = Image.open(file) im = im.resize((32, 32), Image.ANTIALIAS) im = np.array(im).astype(np.float32).flatten() im = im / 255.0 return im test_data = [] test_data.append((load_image('image/dog.png'), )) probs = paddle.infer( output_layer=out, parameters=parameters, input=test_data) lab = np.argsort(-probs) # probs and lab are the results of one batch data print("Label of image/dog.png is: %d", lab[0][0]) if __name__ == '__main__': main()