# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * is_predict = get_config_arg("is_predict", bool, False) ####################Data Configuration ################## if not is_predict: data_dir = './data/' define_py_data_sources2( train_list=data_dir + 'train.list', test_list=data_dir + 'test.list', module='mnist_provider', obj='process') ######################Algorithm Configuration ############# settings( batch_size=128, learning_rate=0.1 / 128.0, learning_method=MomentumOptimizer(0.9), regularization=L2Regularization(0.0005 * 128)) #######################Network Configuration ############# data_size = 1 * 28 * 28 label_size = 10 img = data_layer(name='pixel', size=data_size) def softmax_regression(img): predict = fc_layer(input=img, size=10, act=SoftmaxActivation()) return predict def multilayer_perceptron(img): # The first fully-connected layer hidden1 = fc_layer(input=img, size=128, act=ReluActivation()) # The second fully-connected layer and the according activation function hidden2 = fc_layer(input=hidden1, size=64, act=ReluActivation()) # The thrid fully-connected layer, note that the hidden size should be 10, # which is the number of unique digits predict = fc_layer(input=hidden2, size=10, act=SoftmaxActivation()) return predict def convolutional_neural_network(img): # first conv layer conv_pool_1 = simple_img_conv_pool( input=img, filter_size=5, num_filters=20, num_channel=1, pool_size=2, pool_stride=2, act=TanhActivation()) # second conv layer conv_pool_2 = simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, num_channel=20, pool_size=2, pool_stride=2, act=TanhActivation()) # The first fully-connected layer fc1 = fc_layer(input=conv_pool_2, size=128, act=TanhActivation()) # The softmax layer, note that the hidden size should be 10, # which is the number of unique digits predict = fc_layer(input=fc1, size=10, act=SoftmaxActivation()) return predict predict = softmax_regression(img) #predict = multilayer_perceptron(img) #predict = convolutional_neural_network(img) if not is_predict: lbl = data_layer(name="label", size=label_size) inputs(img, lbl) outputs(classification_cost(input=predict, label=lbl)) else: outputs(predict)