from __future__ import print_function import math, os import numpy as np import paddle import paddle.dataset.conll05 as conll05 import paddle.fluid as fluid import six import time with_gpu = os.getenv('WITH_GPU', '0') != '0' word_dict, verb_dict, label_dict = conll05.get_dict() word_dict_len = len(word_dict) label_dict_len = len(label_dict) pred_dict_len = len(verb_dict) mark_dict_len = 2 word_dim = 32 mark_dim = 5 hidden_dim = 512 depth = 8 mix_hidden_lr = 1e-3 IS_SPARSE = True PASS_NUM = 10 BATCH_SIZE = 10 embedding_name = 'emb' def load_parameter(file_name, h, w): with open(file_name, 'rb') as f: f.read(16) # skip header. return np.fromfile(f, dtype=np.float32).reshape(h, w) def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, **ignored): # 8 features predicate_embedding = fluid.layers.embedding( input=predicate, size=[pred_dict_len, word_dim], dtype='float32', is_sparse=IS_SPARSE, param_attr='vemb') mark_embedding = fluid.layers.embedding( input=mark, size=[mark_dict_len, mark_dim], dtype='float32', is_sparse=IS_SPARSE) word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] emb_layers = [ fluid.layers.embedding( size=[word_dict_len, word_dim], input=x, param_attr=fluid.ParamAttr(name=embedding_name, trainable=False)) for x in word_input ] emb_layers.append(predicate_embedding) emb_layers.append(mark_embedding) hidden_0_layers = [ fluid.layers.fc(input=emb, size=hidden_dim, act='tanh') for emb in emb_layers ] hidden_0 = fluid.layers.sums(input=hidden_0_layers) lstm_0 = fluid.layers.dynamic_lstm( input=hidden_0, size=hidden_dim, candidate_activation='relu', gate_activation='sigmoid', cell_activation='sigmoid') # stack L-LSTM and R-LSTM with direct edges input_tmp = [hidden_0, lstm_0] for i in range(1, depth): mix_hidden = fluid.layers.sums(input=[ fluid.layers.fc(input=input_tmp[0], size=hidden_dim, act='tanh'), fluid.layers.fc(input=input_tmp[1], size=hidden_dim, act='tanh') ]) lstm = fluid.layers.dynamic_lstm( input=mix_hidden, size=hidden_dim, candidate_activation='relu', gate_activation='sigmoid', cell_activation='sigmoid', is_reverse=((i % 2) == 1)) input_tmp = [mix_hidden, lstm] feature_out = fluid.layers.sums(input=[ fluid.layers.fc(input=input_tmp[0], size=label_dict_len, act='tanh'), fluid.layers.fc(input=input_tmp[1], size=label_dict_len, act='tanh') ]) return feature_out def train(use_cuda, save_dirname=None, is_local=True): # define network topology word = fluid.layers.data( name='word_data', shape=[1], dtype='int64', lod_level=1) predicate = fluid.layers.data( name='verb_data', shape=[1], dtype='int64', lod_level=1) ctx_n2 = fluid.layers.data( name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1) ctx_n1 = fluid.layers.data( name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1) ctx_0 = fluid.layers.data( name='ctx_0_data', shape=[1], dtype='int64', lod_level=1) ctx_p1 = fluid.layers.data( name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1) ctx_p2 = fluid.layers.data( name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1) mark = fluid.layers.data( name='mark_data', shape=[1], dtype='int64', lod_level=1) # define network topology feature_out = db_lstm(**locals()) target = fluid.layers.data( name='target', shape=[1], dtype='int64', lod_level=1) crf_cost = fluid.layers.linear_chain_crf( input=feature_out, label=target, param_attr=fluid.ParamAttr(name='crfw', learning_rate=mix_hidden_lr)) avg_cost = fluid.layers.mean(crf_cost) sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.layers.exponential_decay( learning_rate=0.01, decay_steps=100000, decay_rate=0.5, staircase=True)) sgd_optimizer.minimize(avg_cost) crf_decode = fluid.layers.crf_decoding( input=feature_out, param_attr=fluid.ParamAttr(name='crfw')) train_data = paddle.batch( paddle.reader.shuffle(paddle.dataset.conll05.test(), buf_size=8192), batch_size=BATCH_SIZE) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() feeder = fluid.DataFeeder( feed_list=[ word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target ], place=place) exe = fluid.Executor(place) def train_loop(main_program): exe.run(fluid.default_startup_program()) embedding_param = fluid.global_scope().find_var( embedding_name).get_tensor() embedding_param.set( load_parameter(conll05.get_embedding(), word_dict_len, word_dim), place) start_time = time.time() batch_id = 0 for pass_id in six.moves.xrange(PASS_NUM): for data in train_data(): cost = exe.run( main_program, feed=feeder.feed(data), fetch_list=[avg_cost]) cost = cost[0] if batch_id % 10 == 0: print("avg_cost:" + str(cost)) if batch_id != 0: print("second per batch: " + str(( time.time() - start_time) / batch_id)) # Set the threshold low to speed up the CI test if float(cost) < 60.0: if save_dirname is not None: # TODO(liuyiqun): Change the target to crf_decode fluid.io.save_inference_model(save_dirname, [ 'word_data', 'verb_data', 'ctx_n2_data', 'ctx_n1_data', 'ctx_0_data', 'ctx_p1_data', 'ctx_p2_data', 'mark_data' ], [feature_out], exe) return batch_id = batch_id + 1 train_loop(fluid.default_main_program()) def infer(use_cuda, save_dirname=None): if save_dirname is None: return place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) inference_scope = fluid.core.Scope() with fluid.scope_guard(inference_scope): # Use fluid.io.load_inference_model to obtain the inference program desc, # the feed_target_names (the names of variables that will be fed # data using feed operators), and the fetch_targets (variables that # we want to obtain data from using fetch operators). [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model(save_dirname, exe) # Setup inputs by creating LoDTensors to represent sequences of words. # Here each word is the basic element of these LoDTensors and the shape of # each word (base_shape) should be [1] since it is simply an index to # look up for the corresponding word vector. # Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]], # which has only one lod level. Then the created LoDTensors will have only # one higher level structure (sequence of words, or sentence) than the basic # element (word). Hence the LoDTensor will hold data for three sentences of # length 3, 4 and 2, respectively. # Note that lod info should be a list of lists. lod = [[3, 4, 2]] base_shape = [1] # The range of random integers is [low, high] word = fluid.create_random_int_lodtensor( lod, base_shape, place, low=0, high=word_dict_len - 1) pred = fluid.create_random_int_lodtensor( lod, base_shape, place, low=0, high=pred_dict_len - 1) ctx_n2 = fluid.create_random_int_lodtensor( lod, base_shape, place, low=0, high=word_dict_len - 1) ctx_n1 = fluid.create_random_int_lodtensor( lod, base_shape, place, low=0, high=word_dict_len - 1) ctx_0 = fluid.create_random_int_lodtensor( lod, base_shape, place, low=0, high=word_dict_len - 1) ctx_p1 = fluid.create_random_int_lodtensor( lod, base_shape, place, low=0, high=word_dict_len - 1) ctx_p2 = fluid.create_random_int_lodtensor( lod, base_shape, place, low=0, high=word_dict_len - 1) mark = fluid.create_random_int_lodtensor( lod, base_shape, place, low=0, high=mark_dict_len - 1) # Construct feed as a dictionary of {feed_target_name: feed_target_data} # and results will contain a list of data corresponding to fetch_targets. assert feed_target_names[0] == 'word_data' assert feed_target_names[1] == 'verb_data' assert feed_target_names[2] == 'ctx_n2_data' assert feed_target_names[3] == 'ctx_n1_data' assert feed_target_names[4] == 'ctx_0_data' assert feed_target_names[5] == 'ctx_p1_data' assert feed_target_names[6] == 'ctx_p2_data' assert feed_target_names[7] == 'mark_data' results = exe.run( inference_program, feed={ feed_target_names[0]: word, feed_target_names[1]: pred, feed_target_names[2]: ctx_n2, feed_target_names[3]: ctx_n1, feed_target_names[4]: ctx_0, feed_target_names[5]: ctx_p1, feed_target_names[6]: ctx_p2, feed_target_names[7]: mark }, fetch_list=fetch_targets, return_numpy=False) print(results[0].lod()) np_data = np.array(results[0]) print("Inference Shape: ", np_data.shape) def main(use_cuda, is_local=True): if use_cuda and not fluid.core.is_compiled_with_cuda(): return # Directory for saving the trained model save_dirname = "label_semantic_roles.inference.model" train(use_cuda, save_dirname, is_local) infer(use_cuda, save_dirname) main(use_cuda=False)