# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from __future__ import print_function import paddle import paddle.fluid as fluid import numpy import sys from vgg import vgg_bn_drop from resnet import resnet_cifar10 def inference_network(): # The image is 32 * 32 with RGB representation. data_shape = [3, 32, 32] images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') predict = resnet_cifar10(images, 32) # predict = vgg_bn_drop(images) # un-comment to use vgg net return predict def train_network(): predict = inference_network() label = fluid.layers.data(name='label', shape=[1], dtype='int64') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(cost) accuracy = fluid.layers.accuracy(input=predict, label=label) return [avg_cost, accuracy] def optimizer_program(): return fluid.optimizer.Adam(learning_rate=0.001) def train(use_cuda, train_program, params_dirname): BATCH_SIZE = 128 EPOCH_NUM = 2 train_reader = paddle.batch( paddle.reader.shuffle(paddle.dataset.cifar.train10(), buf_size=50000), batch_size=BATCH_SIZE) test_reader = paddle.batch( paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE) def event_handler(event): if isinstance(event, EndStepEvent): if event.step % 100 == 0: print("\nPass %d, Batch %d, Cost %f, Acc %f" % (event.step, event.epoch, event.metrics[0], event.metrics[1])) else: sys.stdout.write('.') sys.stdout.flush() if isinstance(event, EndEpochEvent): avg_cost, accuracy = trainer.test( reader=test_reader, feed_order=['pixel', 'label']) print('\nTest with Pass {0}, Loss {1:2.2}, Acc {2:2.2}'.format( event.epoch, avg_cost, accuracy)) if params_dirname is not None: trainer.save_params(params_dirname) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() trainer = Trainer( train_func=train_program, optimizer_func=optimizer_program, place=place) trainer.train( reader=train_reader, num_epochs=EPOCH_NUM, event_handler=event_handler, feed_order=['pixel', 'label']) def infer(use_cuda, inference_program, params_dirname=None): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() inferencer = Inferencer( infer_func=inference_program, param_path=params_dirname, place=place) # Prepare testing data. from PIL import Image import numpy as np import os def load_image(file): im = Image.open(file) im = im.resize((32, 32), Image.ANTIALIAS) im = np.array(im).astype(np.float32) # The storage order of the loaded image is W(width), # H(height), C(channel). PaddlePaddle requires # the CHW order, so transpose them. im = im.transpose((2, 0, 1)) # CHW im = im / 255.0 # Add one dimension to mimic the list format. im = numpy.expand_dims(im, axis=0) return im cur_dir = os.path.dirname(os.path.realpath(__file__)) img = load_image(cur_dir + '/image/dog.png') # inference results = inferencer.infer({'pixel': img}) label_list = [ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ] print("infer results: %s" % label_list[np.argmax(results[0])]) def main(use_cuda): if use_cuda and not fluid.core.is_compiled_with_cuda(): return save_path = "image_classification_resnet.inference.model" train( use_cuda=use_cuda, train_program=train_network, params_dirname=save_path) infer( use_cuda=use_cuda, inference_program=inference_network, params_dirname=save_path) if __name__ == '__main__': # For demo purpose, the training runs on CPU # Please change accordingly. main(use_cuda=False)