# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle import paddle.fluid as fluid import sys try: from paddle.fluid.contrib.trainer import * from paddle.fluid.contrib.inferencer import * except ImportError: print( "In the fluid 1.0, the trainer and inferencer are moving to paddle.fluid.contrib", file=sys.stderr) from paddle.fluid.trainer import * from paddle.fluid.inferencer import * import numpy BATCH_SIZE = 20 train_reader = paddle.batch( paddle.reader.shuffle(paddle.dataset.uci_housing.train(), buf_size=500), batch_size=BATCH_SIZE) test_reader = paddle.batch( paddle.reader.shuffle(paddle.dataset.uci_housing.test(), buf_size=500), batch_size=BATCH_SIZE) def train_program(): y = fluid.layers.data(name='y', shape=[1], dtype='float32') # feature vector of length 13 x = fluid.layers.data(name='x', shape=[13], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) loss = fluid.layers.square_error_cost(input=y_predict, label=y) avg_loss = fluid.layers.mean(loss) return avg_loss def optimizer_program(): return fluid.optimizer.SGD(learning_rate=0.001) # can use CPU or GPU use_cuda = False place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() trainer = Trainer( train_func=train_program, place=place, optimizer_func=optimizer_program) feed_order = ['x', 'y'] # Specify the directory to save the parameters params_dirname = "fit_a_line.inference.model" # Plot data from paddle.v2.plot import Ploter train_title = "Train cost" test_title = "Test cost" plot_cost = Ploter(train_title, test_title) step = 0 # event_handler prints training and testing info def event_handler_plot(event): global step if isinstance(event, EndStepEvent): if step % 10 == 0: # record a train cost every 10 batches plot_cost.append(train_title, step, event.metrics[0]) if step % 100 == 0: # record a test cost every 100 batches test_metrics = trainer.test( reader=test_reader, feed_order=feed_order) plot_cost.append(test_title, step, test_metrics[0]) plot_cost.plot() if test_metrics[0] < 10.0: # If the accuracy is good enough, we can stop the training. print('loss is less than 10.0, stop') trainer.stop() step += 1 if isinstance(event, EndEpochEvent): if event.epoch % 10 == 0: # We can save the trained parameters for the inferences later if params_dirname is not None: trainer.save_params(params_dirname) # The training could take up to a few minutes. trainer.train( reader=train_reader, num_epochs=100, event_handler=event_handler_plot, feed_order=feed_order) def inference_program(): x = fluid.layers.data(name='x', shape=[13], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) return y_predict inferencer = Inferencer( infer_func=inference_program, param_path=params_dirname, place=place) batch_size = 10 test_reader = paddle.batch( paddle.dataset.uci_housing.test(), batch_size=batch_size) test_data = test_reader().next() test_x = numpy.array([data[0] for data in test_data]).astype("float32") test_y = numpy.array([data[1] for data in test_data]).astype("float32") results = inferencer.infer({'x': test_x}) print("infer results: (House Price)") for idx, val in enumerate(results[0]): print("%d: %.2f" % (idx, val)) print("\nground truth:") for idx, val in enumerate(test_y): print("%d: %.2f" % (idx, val))