# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import matplotlib.pyplot as plt import random def read_data(path, filename): imgf = path + filename + "-images-idx3-ubyte" labelf = path + filename + "-labels-idx1-ubyte" f = open(imgf, "rb") l = open(labelf, "rb") f.read(16) l.read(8) # Define number of samples for train/test n = 60000 if "train" in filename else 10000 rows = 28 cols = 28 images = np.fromfile( f, 'ubyte', count=n * rows * cols).reshape(n, rows, cols).astype('float32') labels = np.fromfile(l, 'ubyte', count=n).astype("int") return images, labels if __name__ == "__main__": train_images, train_labels = read_data("./raw_data/", "train") test_images, test_labels = read_data("./raw_data/", "t10k") label_list = [] for i in range(10): index = random.randint(0, train_images.shape[0] - 1) label_list.append(train_labels[index]) plt.subplot(1, 10, i + 1) plt.imshow(train_images[index], cmap="Greys_r") plt.axis('off') print('label: %s' % (label_list, )) plt.show()