# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.v2 as paddle __all__ = ['resnet_cifar10'] def conv_bn_layer(input, ch_out, filter_size, stride, padding, active_type=paddle.activation.Relu(), ch_in=None): tmp = paddle.layer.img_conv( input=input, filter_size=filter_size, num_channels=ch_in, num_filters=ch_out, stride=stride, padding=padding, act=paddle.activation.Linear(), bias_attr=False, ) return paddle.layer.batch_norm(input=tmp, act=active_type) def shortcut(ipt, ch_in, ch_out, stride): if ch_in != ch_out: return conv_bn_layer(ipt, ch_out, 1, stride, 0, paddle.activation.Linear()) else: return ipt def basicblock(ipt, ch_in, ch_out, stride): tmp = conv_bn_layer(ipt, ch_out, 3, stride, 1) tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, paddle.activation.Linear()) short = shortcut(ipt, ch_in, ch_out, stride) return paddle.layer.addto(input=[tmp, short], act=paddle.activation.Relu()) def layer_warp(block_func, ipt, ch_in, ch_out, count, stride): tmp = block_func(ipt, ch_in, ch_out, stride) for i in range(1, count): tmp = block_func(tmp, ch_out, ch_out, 1) return tmp def resnet_cifar10(ipt, depth=32): # depth should be one of 20, 32, 44, 56, 110, 1202 assert (depth - 2) % 6 == 0 n = (depth - 2) / 6 nStages = {16, 64, 128} conv1 = conv_bn_layer( ipt, ch_in=3, ch_out=16, filter_size=3, stride=1, padding=1) res1 = layer_warp(basicblock, conv1, 16, 16, n, 1) res2 = layer_warp(basicblock, res1, 16, 32, n, 2) res3 = layer_warp(basicblock, res2, 32, 64, n, 2) pool = paddle.layer.img_pool( input=res3, pool_size=8, stride=1, pool_type=paddle.pooling.Avg()) return pool