import os import paddle.v2 as paddle import paddle.v2.dataset.uci_housing as uci_housing with_gpu = os.getenv('WITH_GPU', '0') != '0' def main(): # init paddle.init(use_gpu=with_gpu, trainer_count=1) # network config x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13)) y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1)) cost = paddle.layer.square_error_cost(input=y_predict, label=y) # create parameters parameters = paddle.parameters.create(cost) # create optimizer optimizer = paddle.optimizer.Momentum(momentum=0) trainer = paddle.trainer.SGD( cost=cost, parameters=parameters, update_equation=optimizer) # save model proto as file with open("model.proto", "w") as f: f.write(str(trainer.__topology_in_proto__)) feeding = {'x': 0, 'y': 1} # event_handler to print training and testing info def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: print "Pass %d, Batch %d, Cost %f" % ( event.pass_id, event.batch_id, event.cost) if isinstance(event, paddle.event.EndPass): if event.pass_id % 10 == 0: with open('params_pass_%d.tar' % event.pass_id, 'w') as f: parameters.to_tar(f) result = trainer.test( reader=paddle.batch(uci_housing.test(), batch_size=2), feeding=feeding) print "Test %d, Cost %f" % (event.pass_id, result.cost) # training trainer.train( reader=paddle.batch( paddle.reader.shuffle(uci_housing.train(), buf_size=500), batch_size=2), feeding=feeding, event_handler=event_handler, num_passes=30) # inference test_data_creator = paddle.dataset.uci_housing.test() test_data = [] test_label = [] for item in test_data_creator(): test_data.append((item[0], )) test_label.append(item[1]) if len(test_data) == 5: break # load parameters from tar file. # users can remove the comments and change the model name # with open('params_pass_20.tar', 'r') as f: # parameters = paddle.parameters.Parameters.from_tar(f) probs = paddle.infer( output_layer=y_predict, parameters=parameters, input=test_data) for i in xrange(len(probs)): print "label=" + str(test_label[i][0]) + ", predict=" + str(probs[i][0]) if __name__ == '__main__': main()