import paddle.v2 as paddle # Initialize PaddlePaddle. paddle.init(use_gpu=False, trainer_count=1) # Configure the neural network. x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13)) y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) # Infer using provided test data. probs = paddle.infer( output_layer=y_predict, parameters=paddle.dataset.uci_housing.model(), input=[item for item in paddle.dataset.uci_housing.test()()]) for i in xrange(len(probs)): print 'Predicted price: ${:,.2f}'.format(probs[i][0] * 1000)