# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import math import sys import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.nets as nets IS_SPARSE = True USE_GPU = False BATCH_SIZE = 256 def get_usr_combined_features(): USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1 uid = layers.data(name='user_id', shape=[1], dtype='int64') usr_emb = layers.embedding( input=uid, dtype='float32', size=[USR_DICT_SIZE, 32], param_attr='user_table', is_sparse=IS_SPARSE) usr_fc = layers.fc(input=usr_emb, size=32) USR_GENDER_DICT_SIZE = 2 usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64') usr_gender_emb = layers.embedding( input=usr_gender_id, size=[USR_GENDER_DICT_SIZE, 16], param_attr='gender_table', is_sparse=IS_SPARSE) usr_gender_fc = layers.fc(input=usr_gender_emb, size=16) USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table) usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64") usr_age_emb = layers.embedding( input=usr_age_id, size=[USR_AGE_DICT_SIZE, 16], is_sparse=IS_SPARSE, param_attr='age_table') usr_age_fc = layers.fc(input=usr_age_emb, size=16) USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1 usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64") usr_job_emb = layers.embedding( input=usr_job_id, size=[USR_JOB_DICT_SIZE, 16], param_attr='job_table', is_sparse=IS_SPARSE) usr_job_fc = layers.fc(input=usr_job_emb, size=16) concat_embed = layers.concat( input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1) usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh") return usr_combined_features def get_mov_combined_features(): MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1 mov_id = layers.data(name='movie_id', shape=[1], dtype='int64') mov_emb = layers.embedding( input=mov_id, dtype='float32', size=[MOV_DICT_SIZE, 32], param_attr='movie_table', is_sparse=IS_SPARSE) mov_fc = layers.fc(input=mov_emb, size=32) CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories()) category_id = layers.data( name='category_id', shape=[1], dtype='int64', lod_level=1) mov_categories_emb = layers.embedding( input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE) mov_categories_hidden = layers.sequence_pool( input=mov_categories_emb, pool_type="sum") MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict()) mov_title_id = layers.data( name='movie_title', shape=[1], dtype='int64', lod_level=1) mov_title_emb = layers.embedding( input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE) mov_title_conv = nets.sequence_conv_pool( input=mov_title_emb, num_filters=32, filter_size=3, act="tanh", pool_type="sum") concat_embed = layers.concat( input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1) mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh") return mov_combined_features def inference_program(): usr_combined_features = get_usr_combined_features() mov_combined_features = get_mov_combined_features() inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features) scale_infer = layers.scale(x=inference, scale=5.0) return scale_infer def train_program(): scale_infer = inference_program() label = layers.data(name='score', shape=[1], dtype='float32') square_cost = layers.square_error_cost(input=scale_infer, label=label) avg_cost = layers.mean(square_cost) return [avg_cost, scale_infer] def optimizer_func(): return fluid.optimizer.SGD(learning_rate=0.2) def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() trainer = fluid.Trainer( train_func=train_program, place=place, optimizer_func=optimizer_func) feed_order = [ 'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id', 'category_id', 'movie_title', 'score' ] def event_handler(event): if isinstance(event, fluid.EndStepEvent): test_reader = paddle.batch( paddle.dataset.movielens.test(), batch_size=BATCH_SIZE) avg_cost_set = trainer.test( reader=test_reader, feed_order=feed_order) # get avg cost avg_cost = np.array(avg_cost_set).mean() print("avg_cost: %s" % avg_cost) if float(avg_cost) < 4: # Change this number to adjust accuracy trainer.save_params(params_dirname) trainer.stop() else: print('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1, float(avg_cost))) if math.isnan(float(avg_cost)): sys.exit("got NaN loss, training failed.") train_reader = paddle.batch( paddle.reader.shuffle(paddle.dataset.movielens.train(), buf_size=8192), batch_size=BATCH_SIZE) trainer.train( num_epochs=1, event_handler=event_handler, reader=train_reader, feed_order=feed_order) def infer(use_cuda, inference_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() inferencer = fluid.Inferencer( inference_program, param_path=params_dirname, place=place) # Use the first data from paddle.dataset.movielens.test() as input. # Use create_lod_tensor(data, lod, place) API to generate LoD Tensor, # where `data` is a list of sequences of index numbers, `lod` is # the level of detail (lod) info associated with `data`. # For example, data = [[10, 2, 3], [2, 3]] means that it contains # two sequences of indexes, of length 3 and 2, respectively. # Correspondingly, lod = [[3, 2]] contains one level of detail info, # indicating that `data` consists of two sequences of length 3 and 2. infer_movie_id = 783 infer_movie_name = paddle.dataset.movielens.movie_info()[ infer_movie_id].title user_id = fluid.create_lod_tensor([[1]], [[1]], place) gender_id = fluid.create_lod_tensor([[1]], [[1]], place) age_id = fluid.create_lod_tensor([[0]], [[1]], place) job_id = fluid.create_lod_tensor([[10]], [[1]], place) movie_id = fluid.create_lod_tensor([[783]], [[1]], place) category_id = fluid.create_lod_tensor([[10, 8, 9]], [[3]], place) movie_title = fluid.create_lod_tensor([[1069, 4140, 2923, 710, 988]], [[5]], place) results = inferencer.infer( { 'user_id': user_id, 'gender_id': gender_id, 'age_id': age_id, 'job_id': job_id, 'movie_id': movie_id, 'category_id': category_id, 'movie_title': movie_title }, return_numpy=False) predict_rating = np.array(results[0]) print("Predict Rating of user id 1 on movie \"" + infer_movie_name + "\" is " + str(predict_rating[0][0])) print("Actual Rating of user id 1 on movie \"" + infer_movie_name + "\" is 4.") def main(use_cuda): if use_cuda and not fluid.core.is_compiled_with_cuda(): return params_dirname = "recommender_system.inference.model" train( use_cuda=use_cuda, train_program=train_program, params_dirname=params_dirname) infer( use_cuda=use_cuda, inference_program=inference_program, params_dirname=params_dirname) if __name__ == '__main__': main(USE_GPU)