# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import paddle import paddle.fluid as fluid from functools import partial import numpy as np CLASS_DIM = 2 EMB_DIM = 128 HID_DIM = 512 STACKED_NUM = 3 BATCH_SIZE = 128 USE_GPU = False def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num): assert stacked_num % 2 == 1 emb = fluid.layers.embedding( input=data, size=[input_dim, emb_dim], is_sparse=True) fc1 = fluid.layers.fc(input=emb, size=hid_dim) lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim) inputs = [fc1, lstm1] for i in range(2, stacked_num + 1): fc = fluid.layers.fc(input=inputs, size=hid_dim) lstm, cell = fluid.layers.dynamic_lstm( input=fc, size=hid_dim, is_reverse=(i % 2) == 0) inputs = [fc, lstm] fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max') lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max') prediction = fluid.layers.fc( input=[fc_last, lstm_last], size=class_dim, act='softmax') return prediction def inference_program(word_dict): data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1) dict_dim = len(word_dict) net = stacked_lstm_net(data, dict_dim, CLASS_DIM, EMB_DIM, HID_DIM, STACKED_NUM) return net def train_program(word_dict): prediction = inference_program(word_dict) label = fluid.layers.data(name="label", shape=[1], dtype="int64") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(cost) accuracy = fluid.layers.accuracy(input=prediction, label=label) return [avg_cost, accuracy] def optimizer_func(): return fluid.optimizer.Adagrad(learning_rate=0.002) def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() print("Loading IMDB word dict....") word_dict = paddle.dataset.imdb.word_dict() print("Reading training data....") train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.imdb.train(word_dict), buf_size=25000), batch_size=BATCH_SIZE) print("Reading testing data....") test_reader = paddle.batch( paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE) trainer = fluid.Trainer( train_func=partial(train_program, word_dict), place=place, optimizer_func=optimizer_func) feed_order = ['words', 'label'] def event_handler(event): if isinstance(event, fluid.EndStepEvent): if event.step % 10 == 0: avg_cost, acc = trainer.test( reader=test_reader, feed_order=feed_order) print('Step {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format( event.step, avg_cost, acc)) print("Step {0}, Epoch {1} Metrics {2}".format( event.step, event.epoch, map(np.array, event.metrics))) elif isinstance(event, fluid.EndEpochEvent): trainer.save_params(params_dirname) trainer.train( num_epochs=1, event_handler=event_handler, reader=train_reader, feed_order=feed_order) def infer(use_cuda, inference_program, params_dirname=None): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() word_dict = paddle.dataset.imdb.word_dict() inferencer = fluid.Inferencer( infer_func=partial(inference_program, word_dict), param_path=params_dirname, place=place) # Setup input by creating LoDTensor to represent sequence of words. # Here each word is the basic element of the LoDTensor and the shape of # each word (base_shape) should be [1] since it is simply an index to # look up for the corresponding word vector. # Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]], # which has only one lod level. Then the created LoDTensor will have only # one higher level structure (sequence of words, or sentence) than the basic # element (word). Hence the LoDTensor will hold data for three sentences of # length 3, 4 and 2, respectively. # Note that lod info should be a list of lists. reviews_str = [ 'read the book forget the movie', 'this is a great movie', 'this is very bad' ] reviews = [c.split() for c in reviews_str] UNK = word_dict[''] lod = [] for c in reviews: lod.append([word_dict.get(words, UNK) for words in c]) base_shape = [[len(c) for c in lod]] tensor_words = fluid.create_lod_tensor(lod, base_shape, place) results = inferencer.infer({'words': tensor_words}) for i, r in enumerate(results[0]): print("Predict probability of ", r[0], " to be positive and ", r[1], " to be negative for review \'", reviews_str[i], "\'") def eval(use_cuda, inference_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) word_dict = paddle.dataset.imdb.word_dict() test_reader = paddle.batch( paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE) prediction = inference_program(word_dict) label = fluid.layers.data(name="label", shape=[1], dtype="int64") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(cost) accuracy = fluid.layers.accuracy(input=prediction, label=label) exe.run(fluid.default_startup_program()) fluid.io.load_persistables(exe, params_dirname) total_acc = [] for index, batch_data in enumerate(test_reader()): print(index) sent = map(lambda x: x[0], batch_data) label = np.array(map(lambda x: [x[1]], batch_data)).astype("int64") seq_lens = [[len(seq) for seq in sent]] words = fluid.create_lod_tensor(sent, seq_lens, place) predict, acc = exe.run( fluid.default_main_program(), feed={'words': words, 'label': label}, fetch_list=[prediction, accuracy]) total_acc.append(acc) print(predict) num_right = 0 for n, data in enumerate(batch_data): predicted = predict[n][1] >= 0.5 labeled = label[n][0] print("%d, predicted: %d, labeled: %d, right: %d" % (n, predicted, labeled, (predicted == labeled))) num_right += (predicted == labeled) print("exe acc %f, manual acc %f\n" % (acc, float(num_right) / len(batch_data))) print("total mean acc = %f" % np.mean(total_acc)) def main(use_cuda): if use_cuda and not fluid.core.is_compiled_with_cuda(): return params_dirname = "understand_sentiment_stacked_lstm.inference.model" train(use_cuda, train_program, params_dirname) infer(use_cuda, inference_program, params_dirname) eval(use_cuda, inference_program, params_dirname) if __name__ == '__main__': use_cuda = True # set to True if training with GPU main(use_cuda)