Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
f29126b3
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f29126b3
编写于
3月 07, 2017
作者:
H
helinwang
提交者:
GitHub
3月 07, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #123 from jacquesqiao/machine_translation-v2
Machine translation v2
上级
db79c856
42143e86
变更
2
展开全部
显示空白变更内容
内联
并排
Showing
2 changed file
with
294 addition
and
352 deletion
+294
-352
machine_translation/README.md
machine_translation/README.md
+154
-352
machine_translation/api_train.py
machine_translation/api_train.py
+140
-0
未找到文件。
machine_translation/README.md
浏览文件 @
f29126b3
此差异已折叠。
点击以展开。
machine_translation/api_train.py
0 → 100644
浏览文件 @
f29126b3
import
paddle.v2
as
paddle
def
seqToseq_net
(
source_dict_dim
,
target_dict_dim
):
### Network Architecture
word_vector_dim
=
512
# dimension of word vector
decoder_size
=
512
# dimension of hidden unit in GRU Decoder network
encoder_size
=
512
# dimension of hidden unit in GRU Encoder network
#### Encoder
src_word_id
=
paddle
.
layer
.
data
(
name
=
'source_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
source_dict_dim
))
src_embedding
=
paddle
.
layer
.
embedding
(
input
=
src_word_id
,
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_source_language_embedding'
))
src_forward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
)
src_backward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
,
reverse
=
True
)
encoded_vector
=
paddle
.
layer
.
concat
(
input
=
[
src_forward
,
src_backward
])
#### Decoder
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
)
as
encoded_proj
:
encoded_proj
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
encoded_vector
)
backward_first
=
paddle
.
layer
.
first_seq
(
input
=
src_backward
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
())
as
decoder_boot
:
decoder_boot
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
backward_first
)
def
gru_decoder_with_attention
(
enc_vec
,
enc_proj
,
current_word
):
decoder_mem
=
paddle
.
layer
.
memory
(
name
=
'gru_decoder'
,
size
=
decoder_size
,
boot_layer
=
decoder_boot
)
context
=
paddle
.
networks
.
simple_attention
(
encoded_sequence
=
enc_vec
,
encoded_proj
=
enc_proj
,
decoder_state
=
decoder_mem
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
gru_step
=
paddle
.
layer
.
gru_step
(
name
=
'gru_decoder'
,
input
=
decoder_inputs
,
output_mem
=
decoder_mem
,
size
=
decoder_size
)
with
paddle
.
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
())
as
out
:
out
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
return
out
decoder_group_name
=
"decoder_group"
group_input1
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input2
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_proj
,
is_seq
=
True
)
group_inputs
=
[
group_input1
,
group_input2
]
trg_embedding
=
paddle
.
layer
.
embedding
(
input
=
paddle
.
layer
.
data
(
name
=
'target_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
)),
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
paddle
.
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
)
lbl
=
paddle
.
layer
.
data
(
name
=
'target_language_next_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
return
cost
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
# source and target dict dim.
dict_size
=
30000
source_dict_dim
=
target_dict_dim
=
dict_size
# define network topology
cost
=
seqToseq_net
(
source_dict_dim
,
target_dict_dim
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
# define optimize method and trainer
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-4
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
optimizer
)
# define data reader
feeding
=
{
'source_language_word'
:
0
,
'target_language_word'
:
1
,
'target_language_next_word'
:
2
}
wmt14_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
train
(
dict_size
=
dict_size
),
buf_size
=
8192
),
batch_size
=
5
)
# define event_handler callback
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
10
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
# start to train
trainer
.
train
(
reader
=
wmt14_reader
,
event_handler
=
event_handler
,
num_passes
=
10000
,
feeding
=
feeding
)
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录