提交 ee003d54 编写于 作者: L Luo Tao

fix image description

上级 6a85d1f7
......@@ -42,7 +42,7 @@ In such a classification problem, we usually use the cross entropy loss function
$$ crossentropy(label, y) = -\sum_i label_ilog(y_i) $$
Fig. 2 shows a softmax regression network, with weights in black, and bias in red. +1 indicates bias is 1.
Fig. 2 shows a softmax regression network, with weights in blue, and bias in red. +1 indicates bias is 1.
<p align="center">
<img src="image/softmax_regression_en.png" width=400><br/>
......@@ -57,7 +57,7 @@ The Softmax regression model described above uses the simplest two-layer neural
2. After the second hidden layer, we get $ H_2 = \phi(W_2H_1 + b_2) $.
3. Finally, after output layer, we get $Y=softmax(W_3H_2 + b_3)$, the final classification result vector.
Fig. 3. is Multilayer Perceptron network, with weights in black, and bias in red. +1 indicates bias is 1.
Fig. 3. is Multilayer Perceptron network, with weights in blue, and bias in red. +1 indicates bias is 1.
<p align="center">
<img src="image/mlp_en.png" width=500><br/>
......
......@@ -83,7 +83,7 @@ In such a classification problem, we usually use the cross entropy loss function
$$ crossentropy(label, y) = -\sum_i label_ilog(y_i) $$
Fig. 2 shows a softmax regression network, with weights in black, and bias in red. +1 indicates bias is 1.
Fig. 2 shows a softmax regression network, with weights in blue, and bias in red. +1 indicates bias is 1.
<p align="center">
<img src="image/softmax_regression_en.png" width=400><br/>
......@@ -98,7 +98,7 @@ The Softmax regression model described above uses the simplest two-layer neural
2. After the second hidden layer, we get $ H_2 = \phi(W_2H_1 + b_2) $.
3. Finally, after output layer, we get $Y=softmax(W_3H_2 + b_3)$, the final classification result vector.
Fig. 3. is Multilayer Perceptron network, with weights in black, and bias in red. +1 indicates bias is 1.
Fig. 3. is Multilayer Perceptron network, with weights in blue, and bias in red. +1 indicates bias is 1.
<p align="center">
<img src="image/mlp_en.png" width=500><br/>
......
......@@ -83,7 +83,7 @@ $$ y_i = softmax(\sum_j W_{i,j}x_j + b_i) $$
$$ crossentropy(label, y) = -\sum_i label_ilog(y_i) $$
图2为softmax回归的网络图,图中权重用线表示、偏置用红线表示、+1代表偏置参数的系数为1。
图2为softmax回归的网络图,图中权重用线表示、偏置用红线表示、+1代表偏置参数的系数为1。
<p align="center">
<img src="image/softmax_regression.png" width=400><br/>
......@@ -99,7 +99,7 @@ Softmax回归模型采用了最简单的两层神经网络,即只有输入层
3. 最后,再经过输出层,得到的$Y=softmax(W_3H_2 + b_3)$,即为最后的分类结果向量。
图3为多层感知器的网络结构图,图中权重用线表示、偏置用红线表示、+1代表偏置参数的系数为1。
图3为多层感知器的网络结构图,图中权重用线表示、偏置用红线表示、+1代表偏置参数的系数为1。
<p align="center">
<img src="image/mlp.png" width=500><br/>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册