Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
ea025779
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ea025779
编写于
8月 31, 2020
作者:
C
chenlong
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/book
into add_three_docs
上级
1e9fc024
a7c242a6
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
637 addition
and
0 deletion
+637
-0
paddle2.0_docs/convnet_image_classification/convnet_image_classification.ipynb
...t_image_classification/convnet_image_classification.ipynb
+379
-0
paddle2.0_docs/dynamic_graph/dynamic_graph.ipynb
paddle2.0_docs/dynamic_graph/dynamic_graph.ipynb
+258
-0
未找到文件。
paddle2.0_docs/convnet_image_classification/convnet_image_classification.ipynb
0 → 100644
浏览文件 @
ea025779
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
paddle2.0_docs/dynamic_graph/dynamic_graph.ipynb
0 → 100644
浏览文件 @
ea025779
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 动态图\n",
"\n",
"从飞桨开源框架2.0beta版本开始,飞桨默认为用户开启了动态图模式。在这种模式下,每次执行一个运算,可以立即得到结果(而不是事先定义好网络结构,然后再执行)。\n",
"\n",
"在动态图模式下,您可以更加方便的组织代码,更容易的调试程序,本示例教程将向你介绍飞桨的动态图的使用。\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 设置环境\n",
"\n",
"我们将使用飞桨2.0beta版本,并确认已经开启了动态图模式。"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.0.0\n",
"7f2aa2db3c69cb9ebb8bae9e19280e75f964e1d0\n"
]
}
],
"source": [
"import paddle\n",
"import paddle.nn.functional as F\n",
"import numpy as np\n",
"\n",
"paddle.disable_static()\n",
"print(paddle.__version__)\n",
"print(paddle.__git_commit__)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 基本用法\n",
"\n",
"在动态图模式下,您可以直接运行一个飞桨提供的API,它会立刻返回结果到python。不再需要首先创建一个计算图,然后再给定数据去运行。"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 0.40741017 0.2083312 ]\n",
" [-1.7567089 0.72117436]\n",
" [ 0.8870686 -1.1389219 ]\n",
" [ 1.1233491 0.34348443]]\n",
"[1. 2.]\n",
"[[ 1.4074101 2.208331 ]\n",
" [-0.75670886 2.7211742 ]\n",
" [ 1.8870686 0.86107814]\n",
" [ 2.1233492 2.3434844 ]]\n",
"[ 0.8240726 -0.31436014 -1.3907751 1.810318 ]\n"
]
}
],
"source": [
"a = paddle.randn([4, 2])\n",
"b = paddle.arange(1, 3, dtype='float32')\n",
"\n",
"print(a.numpy())\n",
"print(b.numpy())\n",
"\n",
"c = a + b\n",
"print(c.numpy())\n",
"\n",
"d = paddle.matmul(a, b)\n",
"print(d.numpy())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 使用python的控制流\n",
"\n",
"动态图模式下,您可以使用python的条件判断和循环,这类控制语句来执行神经网络的计算。(不再需要`cond`, `loop`这类OP)\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 +> [5 6 7]\n",
"1 +> [5 7 9]\n",
"2 +> [ 5 9 15]\n",
"3 -> [-3 3 21]\n",
"4 +> [ 5 21 87]\n",
"5 +> [ 5 37 249]\n",
"6 -> [ -3 59 723]\n",
"7 +> [ 5 133 2193]\n",
"8 -> [ -3 251 6555]\n",
"9 -> [ -3 507 19677]\n"
]
}
],
"source": [
"a = paddle.to_tensor(np.array([1, 2, 3]))\n",
"b = paddle.to_tensor(np.array([4, 5, 6]))\n",
"\n",
"for i in range(10):\n",
" r = paddle.rand([1,])\n",
" if r > 0.5:\n",
" c = paddle.pow(a, i) + b\n",
" print(\"{} +> {}\".format(i, c.numpy()))\n",
" else:\n",
" c = paddle.pow(a, i) - b\n",
" print(\"{} -> {}\".format(i, c.numpy()))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 构建更加灵活的网络\n",
"\n",
"- 使用动态图可以用来创建更加灵活的网络,比如根据控制流选择不同的分支网络,和方便的构建权重共享的网络。接下来我们来看一个具体的例子,在这个例子中,第二个线性变换只有0.5的可能性会运行。\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"class MyModel(paddle.nn.Layer):\n",
" def __init__(self, input_size, hidden_size):\n",
" super(MyModel, self).__init__()\n",
" self.linear1 = paddle.nn.Linear(input_size, hidden_size)\n",
" self.linear2 = paddle.nn.Linear(hidden_size, hidden_size)\n",
" self.linear3 = paddle.nn.Linear(hidden_size, 1)\n",
"\n",
" def forward(self, inputs):\n",
" x = self.linear1(inputs)\n",
" x = F.relu(x)\n",
"\n",
" if paddle.rand([1,]) > 0.5: \n",
" x = self.linear2(x)\n",
" x = F.relu(x)\n",
"\n",
" x = self.linear3(x)\n",
" \n",
" return x "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 [2.0915627]\n",
"200 [0.67530334]\n",
"400 [0.52042854]\n",
"600 [0.28010666]\n",
"800 [0.09739777]\n",
"1000 [0.09307177]\n",
"1200 [0.04252927]\n",
"1400 [0.03095707]\n",
"1600 [0.03022156]\n",
"1800 [0.01616007]\n",
"2000 [0.01069116]\n",
"2200 [0.0055158]\n",
"2400 [0.00195092]\n",
"2600 [0.00101116]\n",
"2800 [0.00192219]\n"
]
}
],
"source": [
"total_data, batch_size, input_size, hidden_size = 1000, 64, 128, 256\n",
"\n",
"x_data = np.random.randn(total_data, input_size).astype(np.float32)\n",
"y_data = np.random.randn(total_data, 1).astype(np.float32)\n",
"\n",
"model = MyModel(input_size, hidden_size)\n",
"\n",
"loss_fn = paddle.nn.MSELoss(reduction='mean')\n",
"optimizer = paddle.optimizer.SGD(learning_rate=0.01, \n",
" parameters=model.parameters())\n",
"\n",
"for t in range(200 * (total_data // batch_size)):\n",
" idx = np.random.choice(total_data, batch_size, replace=False)\n",
" x = paddle.to_tensor(x_data[idx,:])\n",
" y = paddle.to_tensor(y_data[idx,:])\n",
" y_pred = model(x)\n",
"\n",
" loss = loss_fn(y_pred, y)\n",
" if t % 200 == 0:\n",
" print(t, loss.numpy())\n",
"\n",
" loss.backward()\n",
" optimizer.minimize(loss)\n",
" model.clear_gradients()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# The end\n",
"\n",
"可以看到使用动态图带来了更灵活易用的方式来组网和训练。"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录