@@ -170,6 +170,8 @@ We must import and initialize PaddlePaddle (enable/disable GPU, set the number o
...
@@ -170,6 +170,8 @@ We must import and initialize PaddlePaddle (enable/disable GPU, set the number o
```python
```python
importsys
importsys
importpaddle.v2aspaddle
importpaddle.v2aspaddle
fromvggimportvgg_bn_drop
fromresnetimportresnet_cifar10
# PaddlePaddle init
# PaddlePaddle init
paddle.init(use_gpu=False,trainer_count=1)
paddle.init(use_gpu=False,trainer_count=1)
...
@@ -243,7 +245,9 @@ First, we use a VGG network. Since the image size and amount of CIFAR10 are rela
...
@@ -243,7 +245,9 @@ First, we use a VGG network. Since the image size and amount of CIFAR10 are rela
The above VGG network extracts high-level features and maps them to a vector of the same size as the categories. Softmax function or classifier is then used for calculating the probability of the image belonging to each category.
The above VGG network extracts high-level features and maps them to a vector of the same size as the categories. Softmax function or classifier is then used for calculating the probability of the image belonging to each category.
```python
```python
out = fc_layer(input=net, size=class_num, act=SoftmaxActivation())
out = paddle.layer.fc(input=net,
size=classdim,
act=paddle.activation.Softmax())
```
```
4. Define Loss Function and Outputs
4. Define Loss Function and Outputs
...
@@ -261,7 +265,7 @@ First, we use a VGG network. Since the image size and amount of CIFAR10 are rela
...
@@ -261,7 +265,7 @@ First, we use a VGG network. Since the image size and amount of CIFAR10 are rela
The first, third and fourth steps of a ResNet are the same as a VGG. The second one is the main module.
The first, third and fourth steps of a ResNet are the same as a VGG. The second one is the main module.
```python
```python
net=resnet_cifar10(data,depth=32)
net=resnet_cifar10(image,depth=56)
```
```
Here are some basic functions used in `resnet_cifar10`:
Here are some basic functions used in `resnet_cifar10`:
@@ -212,6 +212,8 @@ We must import and initialize PaddlePaddle (enable/disable GPU, set the number o
...
@@ -212,6 +212,8 @@ We must import and initialize PaddlePaddle (enable/disable GPU, set the number o
```python
```python
import sys
import sys
import paddle.v2 as paddle
import paddle.v2 as paddle
from vgg import vgg_bn_drop
from resnet import resnet_cifar10
# PaddlePaddle init
# PaddlePaddle init
paddle.init(use_gpu=False, trainer_count=1)
paddle.init(use_gpu=False, trainer_count=1)
...
@@ -285,7 +287,9 @@ First, we use a VGG network. Since the image size and amount of CIFAR10 are rela
...
@@ -285,7 +287,9 @@ First, we use a VGG network. Since the image size and amount of CIFAR10 are rela
The above VGG network extracts high-level features and maps them to a vector of the same size as the categories. Softmax function or classifier is then used for calculating the probability of the image belonging to each category.
The above VGG network extracts high-level features and maps them to a vector of the same size as the categories. Softmax function or classifier is then used for calculating the probability of the image belonging to each category.
```python
```python
out = fc_layer(input=net, size=class_num, act=SoftmaxActivation())
out = paddle.layer.fc(input=net,
size=classdim,
act=paddle.activation.Softmax())
```
```
4. Define Loss Function and Outputs
4. Define Loss Function and Outputs
...
@@ -303,7 +307,7 @@ First, we use a VGG network. Since the image size and amount of CIFAR10 are rela
...
@@ -303,7 +307,7 @@ First, we use a VGG network. Since the image size and amount of CIFAR10 are rela
The first, third and fourth steps of a ResNet are the same as a VGG. The second one is the main module.
The first, third and fourth steps of a ResNet are the same as a VGG. The second one is the main module.
```python
```python
net = resnet_cifar10(data, depth=32)
net = resnet_cifar10(image, depth=56)
```
```
Here are some basic functions used in `resnet_cifar10`:
Here are some basic functions used in `resnet_cifar10`:
@@ -83,11 +83,6 @@ We use the [MovieLens ml-1m](http://files.grouplens.org/datasets/movielens/ml-1m
...
@@ -83,11 +83,6 @@ We use the [MovieLens ml-1m](http://files.grouplens.org/datasets/movielens/ml-1m
`paddle.v2.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens` and `wmt14`, etc. There's no need for us to manually download and preprocess `MovieLens` dataset.
`paddle.v2.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens` and `wmt14`, etc. There's no need for us to manually download and preprocess `MovieLens` dataset.
```python
# Run this block to show dataset's documentation
help(paddle.v2.dataset.movielens)
```
The raw `MoiveLens` contains movie ratings, relevant features from both movies and users.
The raw `MoiveLens` contains movie ratings, relevant features from both movies and users.
@@ -125,11 +125,6 @@ We use the [MovieLens ml-1m](http://files.grouplens.org/datasets/movielens/ml-1m
...
@@ -125,11 +125,6 @@ We use the [MovieLens ml-1m](http://files.grouplens.org/datasets/movielens/ml-1m
`paddle.v2.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens` and `wmt14`, etc. There's no need for us to manually download and preprocess `MovieLens` dataset.
`paddle.v2.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens` and `wmt14`, etc. There's no need for us to manually download and preprocess `MovieLens` dataset.
```python
# Run this block to show dataset's documentation
help(paddle.v2.dataset.movielens)
```
The raw `MoiveLens` contains movie ratings, relevant features from both movies and users.
The raw `MoiveLens` contains movie ratings, relevant features from both movies and users.