提交 d4149643 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #183 from qingqing01/doc_fix

Try to fix typeset in machine translation.
...@@ -303,14 +303,12 @@ wmt14_reader = paddle.batch( ...@@ -303,14 +303,12 @@ wmt14_reader = paddle.batch(
input=backward_first) input=backward_first)
``` ```
3.3 定义解码阶段每一个时间步的RNN行为,即根据当前时刻的源语言上下文向量$c_i$、解码器隐层状态$z_i$和目标语言中第$i$个词$u_i$,来预测第$i+1$个词的概率$p_{i+1}$。 3.3 定义解码阶段每一个时间步的RNN行为,即根据当前时刻的源语言上下文向量$c_i$、解码器隐层状态$z_i$和目标语言中第$i$个词$u_i$,来预测第$i+1$个词的概率$p_{i+1}$。
- decoder_mem记录了前一个时间步的隐层状态$z_i$,其初始状态是decoder_boot。 - decoder_mem记录了前一个时间步的隐层状态$z_i$,其初始状态是decoder_boot。
- context通过调用`simple_attention`函数,实现公式$c_i=\sum {j=1}^{T}a_{ij}h_j$。其中,enc_vec是$h_j$,enc_proj是$h_j$的映射(见3.1),权重$a_{ij}$的计算已经封装在`simple_attention`函数中。 - context通过调用`simple_attention`函数,实现公式$c_i=\sum {j=1}^{T}a_{ij}h_j$。其中,enc_vec是$h_j$,enc_proj是$h_j$的映射(见3.1),权重$a_{ij}$的计算已经封装在`simple_attention`函数中。
- decoder_inputs融合了$c_i$和当前目标词current_word(即$u_i$)的表示。 - decoder_inputs融合了$c_i$和当前目标词current_word(即$u_i$)的表示。
- gru_step通过调用`gru_step_layer`函数,在decoder_inputs和decoder_mem上做了激活操作,即实现公式$z_{i+1}=\phi _{\theta '}\left ( c_i,u_i,z_i \right )$。 - gru_step通过调用`gru_step_layer`函数,在decoder_inputs和decoder_mem上做了激活操作,即实现公式$z_{i+1}=\phi _{\theta '}\left ( c_i,u_i,z_i \right )$。
- 最后,使用softmax归一化计算单词的概率,将out结果返回,即实现公式$p\left ( u_i|u_{<i},\mathbf{x} \right )=softmax(W_sz_i+b_z)$。 - 最后,使用softmax归一化计算单词的概率,将out结果返回,即实现公式$p\left ( u_i|u_{<i},\mathbf{x} \right )=softmax(W_sz_i+b_z)$。
```python ```python
def gru_decoder_with_attention(enc_vec, enc_proj, current_word): def gru_decoder_with_attention(enc_vec, enc_proj, current_word):
......
...@@ -345,14 +345,12 @@ wmt14_reader = paddle.batch( ...@@ -345,14 +345,12 @@ wmt14_reader = paddle.batch(
input=backward_first) input=backward_first)
``` ```
3.3 定义解码阶段每一个时间步的RNN行为,即根据当前时刻的源语言上下文向量$c_i$、解码器隐层状态$z_i$和目标语言中第$i$个词$u_i$,来预测第$i+1$个词的概率$p_{i+1}$。 3.3 定义解码阶段每一个时间步的RNN行为,即根据当前时刻的源语言上下文向量$c_i$、解码器隐层状态$z_i$和目标语言中第$i$个词$u_i$,来预测第$i+1$个词的概率$p_{i+1}$。
- decoder_mem记录了前一个时间步的隐层状态$z_i$,其初始状态是decoder_boot。 - decoder_mem记录了前一个时间步的隐层状态$z_i$,其初始状态是decoder_boot。
- context通过调用`simple_attention`函数,实现公式$c_i=\sum {j=1}^{T}a_{ij}h_j$。其中,enc_vec是$h_j$,enc_proj是$h_j$的映射(见3.1),权重$a_{ij}$的计算已经封装在`simple_attention`函数中。 - context通过调用`simple_attention`函数,实现公式$c_i=\sum {j=1}^{T}a_{ij}h_j$。其中,enc_vec是$h_j$,enc_proj是$h_j$的映射(见3.1),权重$a_{ij}$的计算已经封装在`simple_attention`函数中。
- decoder_inputs融合了$c_i$和当前目标词current_word(即$u_i$)的表示。 - decoder_inputs融合了$c_i$和当前目标词current_word(即$u_i$)的表示。
- gru_step通过调用`gru_step_layer`函数,在decoder_inputs和decoder_mem上做了激活操作,即实现公式$z_{i+1}=\phi _{\theta '}\left ( c_i,u_i,z_i \right )$。 - gru_step通过调用`gru_step_layer`函数,在decoder_inputs和decoder_mem上做了激活操作,即实现公式$z_{i+1}=\phi _{\theta '}\left ( c_i,u_i,z_i \right )$。
- 最后,使用softmax归一化计算单词的概率,将out结果返回,即实现公式$p\left ( u_i|u_{<i},\mathbf{x} \right )=softmax(W_sz_i+b_z)$。 - 最后,使用softmax归一化计算单词的概率,将out结果返回,即实现公式$p\left ( u_i|u_{<i},\mathbf{x} \right )=softmax(W_sz_i+b_z)$。
```python ```python
def gru_decoder_with_attention(enc_vec, enc_proj, current_word): def gru_decoder_with_attention(enc_vec, enc_proj, current_word):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册