diff --git a/recognize_digits/README.en.md b/recognize_digits/README.en.md index 0dea664f5810862bf1074ed79741818dedf341af..fb7e0c0e2b36ee8770d9f6e15fdd5bced0d6fe1a 100644 --- a/recognize_digits/README.en.md +++ b/recognize_digits/README.en.md @@ -25,7 +25,7 @@ MNIST dataset is made from [NIST](https://www.nist.gov/srd/nist-special-database Yann LeCun早先在手写字符识别上做了很多研究,并在研究过程中提出了卷积神经网络(Convolutional Neural Network),大幅度地提高了手写字符的识别能力,也因此成为了深度学习领域的奠基人之一。如今的深度学习领域,卷积神经网络占据了至关重要的地位,从最早Yann LeCun提出的简单LeNet,到如今ImageNet大赛上的优胜模型VGGNet、GoogLeNet、ResNet等(请参见[图像分类](https://github.com/PaddlePaddle/book/tree/develop/image_classification) 教程),人们在图像分类领域,利用卷积神经网络得到了一系列惊人的结果。 -Yann LeCun, one of the founders of Deep Learning, had large contribution on hand-written character recognition in early dates, and proposed CNN (Convolutional Neural Network), which drastically improved recognition capability for hand-written characters. CNN is now a critical key for Deep Learning. From Yann LeCun’s first proposal of LeNet, to those winning models in ImageNet, such as VGGNet, GoogLeNet, ResNet, etc. (Please refer to [Image Classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification) Course) CNN achieved a series of astonishing results in Image Classification. +Yann LeCun, one of the founders of Deep Learning, had large contribution on hand-written character recognition in early dates, and proposed CNN (Convolutional Neural Network), which drastically improved recognition capability for hand-written characters. CNN is now a critical key for Deep Learning. From Yann LeCun’s first proposal of LeNet, to those winning models in ImageNet, such as VGGNet, GoogLeNet, ResNet, etc. (Please refer to [Image Classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification) chapter) CNN achieved a series of astonishing results in Image Classification. 有很多算法在MNIST上进行实验。1998年,LeCun分别用单层线性分类器、多层感知器(Multilayer Perceptron, MLP)和多层卷积神经网络LeNet进行实验,使得测试集上的误差不断下降(从12%下降到0.7%)\[[1](#参考文献)\]。此后,科学家们又基于K近邻(K-Nearest Neighbors)算法\[[2](#参考文献)\]、支持向量机(SVM)\[[3](#参考文献)\]、神经网络\[[4-7](#参考文献)\]和Boosting方法\[[8](#参考文献)\]等做了大量实验,并采用多种预处理方法(如去除歪曲、去噪、模糊等)来提高识别的准确率。 @@ -185,6 +185,21 @@ Pooling layer is a sampling method. The main functionality is to reduce computat 更详细的关于卷积神经网络的具体知识可以参考[斯坦福大学公开课]( http://cs231n.github.io/convolutional-networks/ )和[图像分类](https://github.com/PaddlePaddle/book/blob/develop/image_classification/README.md)教程。 +#### LeNet-5 Network + +
+
+Fig. 6. LeNet-5 Convolutional Neural Network architecture
+