提交 ceb5c99f 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #260 from Incognito/develop

Documentation links to correct github URLs
......@@ -7,7 +7,7 @@
"# Linear Regression\n",
"Let us begin the tutorial with a classical problem called Linear Regression \\[[1](#References)\\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example.\n",
"\n",
"The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).\n",
"The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).\n",
"\n",
"## Problem Setup\n",
"Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity.\n",
......
# Linear Regression
Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example.
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md).
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md).
## Problem Setup
Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity.
......
......@@ -7,7 +7,7 @@
"# 线性回归\n",
"让我们从经典的线性回归(Linear Regression \\[[1](#参考文献)\\])模型开始这份教程。在这一章里,你将使用真实的数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念。\n",
"\n",
"本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。\n",
"本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。\n",
"\n",
"## 背景介绍\n",
"给定一个大小为$n$的数据集 ${\\{y_{i}, x_{i1}, ..., x_{id}\\}}_{i=1}^{n}$,其中$x_{i1}, \\ldots, x_{id}$是第$i$个样本$d$个属性上的取值,$y_i$是该样本待预测的目标。线性回归模型假设目标$y_i$可以被属性间的线性组合描述,即\n",
......
# 线性回归
让我们从经典的线性回归(Linear Regression \[[1](#参考文献)\])模型开始这份教程。在这一章里,你将使用真实的数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念。
本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md)
本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md)
## 背景介绍
给定一个大小为$n$的数据集 ${\{y_{i}, x_{i1}, ..., x_{id}\}}_{i=1}^{n}$,其中$x_{i1}, \ldots, x_{id}$是第$i$个样本$d$个属性上的取值,$y_i$是该样本待预测的目标。线性回归模型假设目标$y_i$可以被属性间的线性组合描述,即
......
......@@ -43,7 +43,7 @@
# Linear Regression
Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example.
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md).
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md).
## Problem Setup
Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity.
......
......@@ -43,7 +43,7 @@
# 线性回归
让我们从经典的线性回归(Linear Regression \[[1](#参考文献)\])模型开始这份教程。在这一章里,你将使用真实的数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念。
本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md)。
本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md)。
## 背景介绍
给定一个大小为$n$的数据集 ${\{y_{i}, x_{i1}, ..., x_{id}\}}_{i=1}^{n}$,其中$x_{i1}, \ldots, x_{id}$是第$i$个样本$d$个属性上的取值,$y_i$是该样本待预测的目标。线性回归模型假设目标$y_i$可以被属性间的线性组合描述,即
......
# Recognize Digits
The source code for this tutorial is under [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/recognize_digits). First-time readers, please refer to PaddlePaddle [installation instructions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
The source code for this tutorial is under [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits). First-time readers, please refer to PaddlePaddle [installation instructions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Introduction
When we learn a new programming language, the first task is usually to write a program that prints "Hello World." In Machine Learning or Deep Learning, the equivalent task is to train a model to perform handwritten digit recognition with [MNIST](http://yann.lecun.com/exdb/mnist/) dataset. Handwriting recognition is a typical image classification problem. The problem is relatively easy, and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1). The input image is a 28x28 matrix, and the label is one of the digits from 0 to 9. Each image is normalized in size and centered.
......@@ -12,7 +12,7 @@ Fig. 1. Examples of MNIST images
The MNIST dataset is created from the [NIST](https://www.nist.gov/srd/nist-special-database-19) Special Database 3 (SD-3) and the Special Database 1 (SD-1). The SD-3 is labeled by the staff of the U.S. Census Bureau, while SD-1 is labeled by high school students the in U.S. Therefore the SD-3 is cleaner and easier to recognize than the SD-1 dataset. Yann LeCun et al. used half of the samples from each of SD-1 and SD-3 to create the MNIST training set (60,000 samples) and test set (10,000 samples), where training set was labeled by 250 different annotators, and it was guaranteed that there wasn't a complete overlap of annotators of training set and test set.
Yann LeCun, one of the founders of Deep Learning, contributed highly towards handwritten character recognition in early days and proposed CNN (Convolutional Neural Network), which drastically improved recognition capability for handwritten characters. CNNs are now a critical concept in Deep Learning. From Yann LeCun's first proposal of LeNet to those winning models in ImageNet, such as VGGNet, GoogLeNet, ResNet, etc. (Please refer to [Image Classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification) tutorial), CNN achieved a series of impressive results in Image Classification tasks.
Yann LeCun, one of the founders of Deep Learning, contributed highly towards handwritten character recognition in early days and proposed CNN (Convolutional Neural Network), which drastically improved recognition capability for handwritten characters. CNNs are now a critical concept in Deep Learning. From Yann LeCun's first proposal of LeNet to those winning models in ImageNet, such as VGGNet, GoogLeNet, ResNet, etc. (Please refer to [Image Classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification) tutorial), CNN achieved a series of impressive results in Image Classification tasks.
Many algorithms are tested on MNIST. In 1998, LeCun experimented with single layer linear classifier, MLP (Multilayer Perceptron) and Multilayer CNN LeNet. These algorithms constantly reduced test error from 12% to 0.7% \[[1](#References)\]. Since then, researchers have worked on many algorithms such as k-NN (K-Nearest Neighbors) \[[2](#References)\], Support Vector Machine (SVM) \[[3](#References)\], Neural Networks \[[4-7](#References)\] and Boosting \[[8](#References)\]. Various preprocessing methods like distortion removal, noise removal, blurring etc. have also been applied to increase recognition accuracy.
......
# 识别数字
本教程源代码目录在[book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/recognize_digits), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
本教程源代码目录在[book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
## 背景介绍
当我们学习编程的时候,编写的第一个程序一般是实现打印"Hello World"。而机器学习(或深度学习)的入门教程,一般都是 [MNIST](http://yann.lecun.com/exdb/mnist/) 数据库上的手写识别问题。原因是手写识别属于典型的图像分类问题,比较简单,同时MNIST数据集也很完备。MNIST数据集作为一个简单的计算机视觉数据集,包含一系列如图1所示的手写数字图片和对应的标签。图片是28x28的像素矩阵,标签则对应着0~9的10个数字。每张图片都经过了大小归一化和居中处理。
......@@ -12,7 +12,7 @@
MNIST数据集是从 [NIST](https://www.nist.gov/srd/nist-special-database-19) 的Special Database 3(SD-3)和Special Database 1(SD-1)构建而来。由于SD-3是由美国人口调查局的员工进行标注,SD-1是由美国高中生进行标注,因此SD-3比SD-1更干净也更容易识别。Yann LeCun等人从SD-1和SD-3中各取一半作为MNIST的训练集(60000条数据)和测试集(10000条数据),其中训练集来自250位不同的标注员,此外还保证了训练集和测试集的标注员是不完全相同的。
Yann LeCun早先在手写字符识别上做了很多研究,并在研究过程中提出了卷积神经网络(Convolutional Neural Network),大幅度地提高了手写字符的识别能力,也因此成为了深度学习领域的奠基人之一。如今的深度学习领域,卷积神经网络占据了至关重要的地位,从最早Yann LeCun提出的简单LeNet,到如今ImageNet大赛上的优胜模型VGGNet、GoogLeNet、ResNet等(请参见[图像分类](https://github.com/PaddlePaddle/book/tree/develop/image_classification) 教程),人们在图像分类领域,利用卷积神经网络得到了一系列惊人的结果。
Yann LeCun早先在手写字符识别上做了很多研究,并在研究过程中提出了卷积神经网络(Convolutional Neural Network),大幅度地提高了手写字符的识别能力,也因此成为了深度学习领域的奠基人之一。如今的深度学习领域,卷积神经网络占据了至关重要的地位,从最早Yann LeCun提出的简单LeNet,到如今ImageNet大赛上的优胜模型VGGNet、GoogLeNet、ResNet等(请参见[图像分类](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification) 教程),人们在图像分类领域,利用卷积神经网络得到了一系列惊人的结果。
有很多算法在MNIST上进行实验。1998年,LeCun分别用单层线性分类器、多层感知器(Multilayer Perceptron, MLP)和多层卷积神经网络LeNet进行实验,使得测试集上的误差不断下降(从12%下降到0.7%)\[[1](#参考文献)\]。此后,科学家们又基于K近邻(K-Nearest Neighbors)算法\[[2](#参考文献)\]、支持向量机(SVM)\[[3](#参考文献)\]、神经网络\[[4-7](#参考文献)\]和Boosting方法\[[8](#参考文献)\]等做了大量实验,并采用多种预处理方法(如去除歪曲、去噪、模糊等)来提高识别的准确率。
......
......@@ -42,7 +42,7 @@
<div id="markdown" style='display:none'>
# Recognize Digits
The source code for this tutorial is under [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/recognize_digits). First-time readers, please refer to PaddlePaddle [installation instructions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
The source code for this tutorial is under [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits). First-time readers, please refer to PaddlePaddle [installation instructions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Introduction
When we learn a new programming language, the first task is usually to write a program that prints "Hello World." In Machine Learning or Deep Learning, the equivalent task is to train a model to perform handwritten digit recognition with [MNIST](http://yann.lecun.com/exdb/mnist/) dataset. Handwriting recognition is a typical image classification problem. The problem is relatively easy, and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1). The input image is a 28x28 matrix, and the label is one of the digits from 0 to 9. Each image is normalized in size and centered.
......@@ -54,7 +54,7 @@ Fig. 1. Examples of MNIST images
The MNIST dataset is created from the [NIST](https://www.nist.gov/srd/nist-special-database-19) Special Database 3 (SD-3) and the Special Database 1 (SD-1). The SD-3 is labeled by the staff of the U.S. Census Bureau, while SD-1 is labeled by high school students the in U.S. Therefore the SD-3 is cleaner and easier to recognize than the SD-1 dataset. Yann LeCun et al. used half of the samples from each of SD-1 and SD-3 to create the MNIST training set (60,000 samples) and test set (10,000 samples), where training set was labeled by 250 different annotators, and it was guaranteed that there wasn't a complete overlap of annotators of training set and test set.
Yann LeCun, one of the founders of Deep Learning, contributed highly towards handwritten character recognition in early days and proposed CNN (Convolutional Neural Network), which drastically improved recognition capability for handwritten characters. CNNs are now a critical concept in Deep Learning. From Yann LeCun's first proposal of LeNet to those winning models in ImageNet, such as VGGNet, GoogLeNet, ResNet, etc. (Please refer to [Image Classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification) tutorial), CNN achieved a series of impressive results in Image Classification tasks.
Yann LeCun, one of the founders of Deep Learning, contributed highly towards handwritten character recognition in early days and proposed CNN (Convolutional Neural Network), which drastically improved recognition capability for handwritten characters. CNNs are now a critical concept in Deep Learning. From Yann LeCun's first proposal of LeNet to those winning models in ImageNet, such as VGGNet, GoogLeNet, ResNet, etc. (Please refer to [Image Classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification) tutorial), CNN achieved a series of impressive results in Image Classification tasks.
Many algorithms are tested on MNIST. In 1998, LeCun experimented with single layer linear classifier, MLP (Multilayer Perceptron) and Multilayer CNN LeNet. These algorithms constantly reduced test error from 12% to 0.7% \[[1](#References)\]. Since then, researchers have worked on many algorithms such as k-NN (K-Nearest Neighbors) \[[2](#References)\], Support Vector Machine (SVM) \[[3](#References)\], Neural Networks \[[4-7](#References)\] and Boosting \[[8](#References)\]. Various preprocessing methods like distortion removal, noise removal, blurring etc. have also been applied to increase recognition accuracy.
......
......@@ -42,7 +42,7 @@
<div id="markdown" style='display:none'>
# 识别数字
本教程源代码目录在[book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/recognize_digits), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
本教程源代码目录在[book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
## 背景介绍
当我们学习编程的时候,编写的第一个程序一般是实现打印"Hello World"。而机器学习(或深度学习)的入门教程,一般都是 [MNIST](http://yann.lecun.com/exdb/mnist/) 数据库上的手写识别问题。原因是手写识别属于典型的图像分类问题,比较简单,同时MNIST数据集也很完备。MNIST数据集作为一个简单的计算机视觉数据集,包含一系列如图1所示的手写数字图片和对应的标签。图片是28x28的像素矩阵,标签则对应着0~9的10个数字。每张图片都经过了大小归一化和居中处理。
......@@ -54,7 +54,7 @@
MNIST数据集是从 [NIST](https://www.nist.gov/srd/nist-special-database-19) 的Special Database 3(SD-3)和Special Database 1(SD-1)构建而来。由于SD-3是由美国人口调查局的员工进行标注,SD-1是由美国高中生进行标注,因此SD-3比SD-1更干净也更容易识别。Yann LeCun等人从SD-1和SD-3中各取一半作为MNIST的训练集(60000条数据)和测试集(10000条数据),其中训练集来自250位不同的标注员,此外还保证了训练集和测试集的标注员是不完全相同的。
Yann LeCun早先在手写字符识别上做了很多研究,并在研究过程中提出了卷积神经网络(Convolutional Neural Network),大幅度地提高了手写字符的识别能力,也因此成为了深度学习领域的奠基人之一。如今的深度学习领域,卷积神经网络占据了至关重要的地位,从最早Yann LeCun提出的简单LeNet,到如今ImageNet大赛上的优胜模型VGGNet、GoogLeNet、ResNet等(请参见[图像分类](https://github.com/PaddlePaddle/book/tree/develop/image_classification) 教程),人们在图像分类领域,利用卷积神经网络得到了一系列惊人的结果。
Yann LeCun早先在手写字符识别上做了很多研究,并在研究过程中提出了卷积神经网络(Convolutional Neural Network),大幅度地提高了手写字符的识别能力,也因此成为了深度学习领域的奠基人之一。如今的深度学习领域,卷积神经网络占据了至关重要的地位,从最早Yann LeCun提出的简单LeNet,到如今ImageNet大赛上的优胜模型VGGNet、GoogLeNet、ResNet等(请参见[图像分类](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification) 教程),人们在图像分类领域,利用卷积神经网络得到了一系列惊人的结果。
有很多算法在MNIST上进行实验。1998年,LeCun分别用单层线性分类器、多层感知器(Multilayer Perceptron, MLP)和多层卷积神经网络LeNet进行实验,使得测试集上的误差不断下降(从12%下降到0.7%)\[[1](#参考文献)\]。此后,科学家们又基于K近邻(K-Nearest Neighbors)算法\[[2](#参考文献)\]、支持向量机(SVM)\[[3](#参考文献)\]、神经网络\[[4-7](#参考文献)\]和Boosting方法\[[8](#参考文献)\]等做了大量实验,并采用多种预处理方法(如去除歪曲、去噪、模糊等)来提高识别的准确率。
......
Image Classification
=======================
The source code for this chapter is at [book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification). First-time users, please refer to PaddlePaddle [Installation Tutorial](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst) for installation instructions.
The source code for this chapter is at [book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification). First-time users, please refer to PaddlePaddle [Installation Tutorial](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst) for installation instructions.
## Background
......
# 图像分类
本教程源代码目录在[book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
本教程源代码目录在[book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
## 背景介绍
......
......@@ -43,7 +43,7 @@
Image Classification
=======================
The source code for this chapter is at [book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification). First-time users, please refer to PaddlePaddle [Installation Tutorial](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst) for installation instructions.
The source code for this chapter is at [book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification). First-time users, please refer to PaddlePaddle [Installation Tutorial](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst) for installation instructions.
## Background
......
......@@ -42,7 +42,7 @@
<div id="markdown" style='display:none'>
# 图像分类
本教程源代码目录在[book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
本教程源代码目录在[book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
## 背景介绍
......
# Word2Vec
This is intended as a reference tutorial. The source code of this tutorial lives on [book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/word2vec).
This is intended as a reference tutorial. The source code of this tutorial lives on [book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
......
# 词向量
本教程源代码目录在[book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/word2vec), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
本教程源代码目录在[book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
## 背景介绍
......
......@@ -42,7 +42,7 @@
<div id="markdown" style='display:none'>
# Word2Vec
This is intended as a reference tutorial. The source code of this tutorial lives on [book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/word2vec).
This is intended as a reference tutorial. The source code of this tutorial lives on [book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
......
......@@ -43,7 +43,7 @@
# 词向量
本教程源代码目录在[book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/word2vec), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
本教程源代码目录在[book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
## 背景介绍
......
# Sentiment Analysis
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/05.understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Background
......
# 情感分析
本教程源代码目录在[book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
本教程源代码目录在[book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/05.understand_sentiment), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
## 背景介绍
在自然语言处理中,情感分析一般是指判断一段文本所表达的情绪状态。其中,一段文本可以是一个句子,一个段落或一个文档。情绪状态可以是两类,如(正面,负面),(高兴,悲伤);也可以是三类,如(积极,消极,中性)等等。情感分析的应用场景十分广泛,如把用户在购物网站(亚马逊、天猫、淘宝等)、旅游网站、电影评论网站上发表的评论分成正面评论和负面评论;或为了分析用户对于某一产品的整体使用感受,抓取产品的用户评论并进行情感分析等等。表格1展示了对电影评论进行情感分析的例子:
......
......@@ -42,7 +42,7 @@
<div id="markdown" style='display:none'>
# Sentiment Analysis
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/05.understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Background
......
......@@ -42,7 +42,7 @@
<div id="markdown" style='display:none'>
# 情感分析
本教程源代码目录在[book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
本教程源代码目录在[book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/05.understand_sentiment), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
## 背景介绍
在自然语言处理中,情感分析一般是指判断一段文本所表达的情绪状态。其中,一段文本可以是一个句子,一个段落或一个文档。情绪状态可以是两类,如(正面,负面),(高兴,悲伤);也可以是三类,如(积极,消极,中性)等等。情感分析的应用场景十分广泛,如把用户在购物网站(亚马逊、天猫、淘宝等)、旅游网站、电影评论网站上发表的评论分成正面评论和负面评论;或为了分析用户对于某一产品的整体使用感受,抓取产品的用户评论并进行情感分析等等。表格1展示了对电影评论进行情感分析的例子:
......
# Semantic Role Labeling
The source code of this chapter is live on [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/label_semantic_roles).
The source code of this chapter is live on [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/06.label_semantic_roles).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
......@@ -50,7 +50,7 @@ In this tutorial, our SRL system is built as an end-to-end system via a neural n
## Model
**Recurrent Neural Networks** (*RNN*) are important tools for sequence modeling and have been successfully used in some natural language processing tasks. Unlike feed-forward neural networks, RNNs can model the dependencies between elements of sequences. As a variant of RNNs', LSTMs aim model long-term dependency in long sequences. We have introduced this in [understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment). In this chapter, we continue to use LSTMs to solve SRL problems.
**Recurrent Neural Networks** (*RNN*) are important tools for sequence modeling and have been successfully used in some natural language processing tasks. Unlike feed-forward neural networks, RNNs can model the dependencies between elements of sequences. As a variant of RNNs', LSTMs aim model long-term dependency in long sequences. We have introduced this in [understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/05.understand_sentiment). In this chapter, we continue to use LSTMs to solve SRL problems.
### Stacked Recurrent Neural Network
......@@ -204,7 +204,7 @@ In addition to the data, we provide following resources:
| predicate_dict | predicate dictionary, total 3162 predicates |
| emb | a pre-trained word vector lookup table, 32-dimentional |
We trained a language model on the English Wikipedia to get a word vector lookup table used to initialize the SRL model. While training the SRL model, the word vector lookup table is no longer updated. To learn more about the language model and the word vector lookup table, please refer to the tutorial [word vector](https://github.com/PaddlePaddle/book/blob/develop/word2vec/README.md). There are 995,000,000 tokens in the training corpus, and the dictionary size is 4900,000 words. In the CoNLL 2005 training corpus, 5% of the words are not in the 4900,000 words, and we see them all as unknown words, represented by `<unk>`.
We trained a language model on the English Wikipedia to get a word vector lookup table used to initialize the SRL model. While training the SRL model, the word vector lookup table is no longer updated. To learn more about the language model and the word vector lookup table, please refer to the tutorial [word vector](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.md). There are 995,000,000 tokens in the training corpus, and the dictionary size is 4900,000 words. In the CoNLL 2005 training corpus, 5% of the words are not in the 4900,000 words, and we see them all as unknown words, represented by `<unk>`.
Here we fetch the dictionary, and print its size:
......
# 语义角色标注
本教程源代码目录在[book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/label_semantic_roles), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
本教程源代码目录在[book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/06.label_semantic_roles), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
## 背景介绍
......@@ -40,7 +40,7 @@ $$\mbox{[小明]}_{\mbox{Agent}}\mbox{[昨天]}_{\mbox{Time}}\mbox{[晚上]}_\mb
## 模型概览
循环神经网络(Recurrent Neural Network)是一种对序列建模的重要模型,在自然语言处理任务中有着广泛地应用。不同于前馈神经网络(Feed-forward Neural Network),RNN能够处理输入之间前后关联的问题。LSTM是RNN的一种重要变种,常用来学习长序列中蕴含的长程依赖关系,我们在[情感分析](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment)一篇中已经介绍过,这一篇中我们依然利用LSTM来解决SRL问题。
循环神经网络(Recurrent Neural Network)是一种对序列建模的重要模型,在自然语言处理任务中有着广泛地应用。不同于前馈神经网络(Feed-forward Neural Network),RNN能够处理输入之间前后关联的问题。LSTM是RNN的一种重要变种,常用来学习长序列中蕴含的长程依赖关系,我们在[情感分析](https://github.com/PaddlePaddle/book/tree/develop/05.understand_sentiment)一篇中已经介绍过,这一篇中我们依然利用LSTM来解决SRL问题。
### 栈式循环神经网络(Stacked Recurrent Neural Network)
......@@ -182,7 +182,7 @@ conll05st-release/
| predicate_dict | 谓词的词典,共计3162个词 |
| emb | 一个训练好的词表,32维 |
我们在英文维基百科上训练语言模型得到了一份词向量用来初始化SRL模型。在SRL模型训练过程中,词向量不再被更新。关于语言模型和词向量可以参考[词向量](https://github.com/PaddlePaddle/book/blob/develop/word2vec/README.md) 这篇教程。我们训练语言模型的语料共有995,000,000个token,词典大小控制为4900,000词。CoNLL 2005训练语料中有5%的词不在这4900,000个词中,我们将它们全部看作未登录词,用`<unk>`表示。
我们在英文维基百科上训练语言模型得到了一份词向量用来初始化SRL模型。在SRL模型训练过程中,词向量不再被更新。关于语言模型和词向量可以参考[词向量](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.md) 这篇教程。我们训练语言模型的语料共有995,000,000个token,词典大小控制为4900,000词。CoNLL 2005训练语料中有5%的词不在这4900,000个词中,我们将它们全部看作未登录词,用`<unk>`表示。
获取词典,打印词典大小:
......
......@@ -42,7 +42,7 @@
<div id="markdown" style='display:none'>
# Semantic Role Labeling
The source code of this chapter is live on [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/label_semantic_roles).
The source code of this chapter is live on [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/06.label_semantic_roles).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
......@@ -92,7 +92,7 @@ In this tutorial, our SRL system is built as an end-to-end system via a neural n
## Model
**Recurrent Neural Networks** (*RNN*) are important tools for sequence modeling and have been successfully used in some natural language processing tasks. Unlike feed-forward neural networks, RNNs can model the dependencies between elements of sequences. As a variant of RNNs', LSTMs aim model long-term dependency in long sequences. We have introduced this in [understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment). In this chapter, we continue to use LSTMs to solve SRL problems.
**Recurrent Neural Networks** (*RNN*) are important tools for sequence modeling and have been successfully used in some natural language processing tasks. Unlike feed-forward neural networks, RNNs can model the dependencies between elements of sequences. As a variant of RNNs', LSTMs aim model long-term dependency in long sequences. We have introduced this in [understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/05.understand_sentiment). In this chapter, we continue to use LSTMs to solve SRL problems.
### Stacked Recurrent Neural Network
......@@ -246,7 +246,7 @@ In addition to the data, we provide following resources:
| predicate_dict | predicate dictionary, total 3162 predicates |
| emb | a pre-trained word vector lookup table, 32-dimentional |
We trained a language model on the English Wikipedia to get a word vector lookup table used to initialize the SRL model. While training the SRL model, the word vector lookup table is no longer updated. To learn more about the language model and the word vector lookup table, please refer to the tutorial [word vector](https://github.com/PaddlePaddle/book/blob/develop/word2vec/README.md). There are 995,000,000 tokens in the training corpus, and the dictionary size is 4900,000 words. In the CoNLL 2005 training corpus, 5% of the words are not in the 4900,000 words, and we see them all as unknown words, represented by `<unk>`.
We trained a language model on the English Wikipedia to get a word vector lookup table used to initialize the SRL model. While training the SRL model, the word vector lookup table is no longer updated. To learn more about the language model and the word vector lookup table, please refer to the tutorial [word vector](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.md). There are 995,000,000 tokens in the training corpus, and the dictionary size is 4900,000 words. In the CoNLL 2005 training corpus, 5% of the words are not in the 4900,000 words, and we see them all as unknown words, represented by `<unk>`.
Here we fetch the dictionary, and print its size:
......
......@@ -42,7 +42,7 @@
<div id="markdown" style='display:none'>
# 语义角色标注
本教程源代码目录在[book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/label_semantic_roles), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
本教程源代码目录在[book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/06.label_semantic_roles), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
## 背景介绍
......@@ -82,7 +82,7 @@ $$\mbox{[小明]}_{\mbox{Agent}}\mbox{[昨天]}_{\mbox{Time}}\mbox{[晚上]}_\mb
## 模型概览
循环神经网络(Recurrent Neural Network)是一种对序列建模的重要模型,在自然语言处理任务中有着广泛地应用。不同于前馈神经网络(Feed-forward Neural Network),RNN能够处理输入之间前后关联的问题。LSTM是RNN的一种重要变种,常用来学习长序列中蕴含的长程依赖关系,我们在[情感分析](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment)一篇中已经介绍过,这一篇中我们依然利用LSTM来解决SRL问题。
循环神经网络(Recurrent Neural Network)是一种对序列建模的重要模型,在自然语言处理任务中有着广泛地应用。不同于前馈神经网络(Feed-forward Neural Network),RNN能够处理输入之间前后关联的问题。LSTM是RNN的一种重要变种,常用来学习长序列中蕴含的长程依赖关系,我们在[情感分析](https://github.com/PaddlePaddle/book/tree/develop/05.understand_sentiment)一篇中已经介绍过,这一篇中我们依然利用LSTM来解决SRL问题。
### 栈式循环神经网络(Stacked Recurrent Neural Network)
......@@ -224,7 +224,7 @@ conll05st-release/
| predicate_dict | 谓词的词典,共计3162个词 |
| emb | 一个训练好的词表,32维 |
我们在英文维基百科上训练语言模型得到了一份词向量用来初始化SRL模型。在SRL模型训练过程中,词向量不再被更新。关于语言模型和词向量可以参考[词向量](https://github.com/PaddlePaddle/book/blob/develop/word2vec/README.md) 这篇教程。我们训练语言模型的语料共有995,000,000个token,词典大小控制为4900,000词。CoNLL 2005训练语料中有5%的词不在这4900,000个词中,我们将它们全部看作未登录词,用`<unk>`表示。
我们在英文维基百科上训练语言模型得到了一份词向量用来初始化SRL模型。在SRL模型训练过程中,词向量不再被更新。关于语言模型和词向量可以参考[词向量](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.md) 这篇教程。我们训练语言模型的语料共有995,000,000个token,词典大小控制为4900,000词。CoNLL 2005训练语料中有5%的词不在这4900,000个词中,我们将它们全部看作未登录词,用`<unk>`表示。
获取词典,打印词典大小:
......
# Machine Translation
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/machine_translation). Please refer to the PaddlePaddle [installation tutorial](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst) if you are a first time user.
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/07.machine_translation). Please refer to the PaddlePaddle [installation tutorial](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst) if you are a first time user.
## Background
......
# 机器翻译
本教程源代码目录在[book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/machine_translation), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
本教程源代码目录在[book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/07.machine_translation), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
## 背景介绍
......
......@@ -42,7 +42,7 @@
<div id="markdown" style='display:none'>
# Machine Translation
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/machine_translation). Please refer to the PaddlePaddle [installation tutorial](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst) if you are a first time user.
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/07.machine_translation). Please refer to the PaddlePaddle [installation tutorial](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst) if you are a first time user.
## Background
......
......@@ -42,7 +42,7 @@
<div id="markdown" style='display:none'>
# 机器翻译
本教程源代码目录在[book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/machine_translation), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
本教程源代码目录在[book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/07.machine_translation), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
## 背景介绍
......
# Personalized Recommendation
The source code of this tutorial is in [book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/recommender_system).
The source code of this tutorial is in [book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/08.recommender_system).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
......
# 个性化推荐
本教程源代码目录在[book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/recommender_system), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
本教程源代码目录在[book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/08.recommender_system), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)
## 背景介绍
......
......@@ -42,7 +42,7 @@
<div id="markdown" style='display:none'>
# Personalized Recommendation
The source code of this tutorial is in [book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/recommender_system).
The source code of this tutorial is in [book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/08.recommender_system).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
......
......@@ -42,7 +42,7 @@
<div id="markdown" style='display:none'>
# 个性化推荐
本教程源代码目录在[book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/recommender_system), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
本教程源代码目录在[book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/08.recommender_system), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。
## 背景介绍
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册