diff --git a/03.image_classification/README.md b/03.image_classification/README.md index 358e8fab3f9a4ab5cb050c3741d8a30eaca3ba8f..e3d568ec6aa865800aec8eb81755b523573a8418 100644 --- a/03.image_classification/README.md +++ b/03.image_classification/README.md @@ -10,7 +10,7 @@ Compared to words, images provide much more vivid and easier to understand infor Image classification is the task of distinguishing images in different categories based on their semantic meaning. It is a core problem in computer vision and is also the foundation of other higher level computer vision tasks such as object detection, image segmentation, object tracking, action recognition, etc. Image classification has applications in many areas such as face recognition, intelligent video analysis in security systems, traffic scene recognition in transportation systems, content-based image retrieval and automatic photo indexing in web services, image classification in medicine, etc. -To classify an image we first encode the entire image using handcrafted or learned features and then determine the category using a classifier. Thus, feature extraction plays an important role in image classification. Prior to deep learning the BoW(Bag of Words) model was the most widely used method for classifying an image as well as an object. The BoW technique was introduced in Natural Language Processing where a training sentence is represented as a bag of words. In the context of image classification, the BoW model requires constructing a dictionary. The simplest BoW framework can be designed with three steps: **feature extraction**, **feature encoding** and **classifier design**. +To classify an image we firstly encode the entire image using handcrafted or learned features and then determine the category using a classifier. Thus, feature extraction plays an important role in image classification. Prior to deep learning the BoW(Bag of Words) model was the most widely used method for classifying an image as well as an object. The BoW technique was introduced in Natural Language Processing where a training sentence is represented as a bag of words. In the context of image classification, the BoW model requires constructing a dictionary. The simplest BoW framework can be designed with three steps: **feature extraction**, **feature encoding** and **classifier design**. Using Deep learning, image classification can be framed as a supervised or unsupervised learning problem that uses hierarchical features automatically without any need for manually crafted features from the image. In recent years, Convolutional Neural Networks (CNNs) have made significant progress in image classification. CNNs use raw image pixels as input, extract low-level and high-level abstract features through convolution operations, and directly output the classification results from the model. This style of end-to-end learning has lead to not only increased performance but also wider adoption various applications. @@ -47,7 +47,7 @@ Figure 3. Disturbed images [22] ## Model Overview -A large amount of research in image classification is built upon public datasets such as [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/), [ImageNet](http://image-net.org/) etc. Many image classification algorithms are usually evaluated and compared on these datasets. PASCAL VOC is a computer vision competition started in 2005, and ImageNet is a dataset for Large Scale Visual Recognition Challenge (ILSVRC) started in 2010. In this chapter, we introduce some image classification models from the submissions to these competitions. +A large amount of research in image classification is built upon public datasets such as [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/), [ImageNet](http://image-net.org/) etc. Many image classification algorithms are usually evaluated and compared on top of these datasets. PASCAL VOC is a computer vision competition started in 2005, and ImageNet is a dataset for Large Scale Visual Recognition Challenge (ILSVRC) started in 2010. In this chapter, we introduce some image classification models from the submissions to these competitions. Before 2012, traditional image classification was accomplished with the three steps described in the background section. A complete model construction usually involves the following stages: low-level feature extraction, feature encoding, spatial constraint or feature clustering, classifier design, model ensemble. @@ -87,7 +87,7 @@ Figure 5. A CNN example [20] - Dropout [10]: At each training stage, individual nodes are dropped out of the network with a certain probability. This improves the network's ability to generalize and avoids overfitting. -Parameter updates at each layer during training causes input layer distributions to change and in turn requires hyper-parameters to be careful tuned. In 2015, Sergey Ioffe and Christian Szegedy proposed a Batch Normalization (BN) algorithm [14], which normalizes the features of each batch in a layer, and enables relatively stable distribution in each layer. Not only does BN algorithm act as a regularizer, but also reduces the need for careful hyper-parameter design. Experiments demonstrate that BN algorithm accelerates the training convergence and has been widely used in later deeper models. +Parameter updates at each layer during training causes input layer distributions to change and in turn requires hyper-parameters to be carefully tuned. In 2015, Sergey Ioffe and Christian Szegedy proposed a Batch Normalization (BN) algorithm [14], which normalizes the features of each batch in a layer, and enables relatively stable distribution in each layer. Not only does BN algorithm act as a regularizer, but also reduces the need for careful hyper-parameter design. Experiments demonstrate that BN algorithm accelerates the training convergence and has been widely used in later deeper models. In the following sections, we will introduce the following network architectures - VGG, GoogleNet and ResNets. @@ -119,7 +119,7 @@ Figure 7. Inception block GoogleNet consists of multiple stacked Inception blocks followed by an avg-pooling layer as in NIN instead of traditional fully connected layers. The difference between GoogleNet and NIN is that GoogleNet adds a fully connected layer after avg-pooling layer to output a vector of category size. Besides these two characteristics, the features from middle layers of a GoogleNet are also very discriminative. Therefore, GoogeleNet inserts two auxiliary classifiers in the model for enhancing gradient and regularization when doing backpropagation. The loss function of the whole network is the weighted sum of these three classifiers. -Figure 8 illustrates the neural architecture of a GoogleNet which consists of 22 layers: it starts with three regular convolutional layers followed by three groups of sub-networks -- the first group contains two Inception blocks, the second one five, and the third one two. It ends up with an average pooling and a fully-connected layer. +Figure 8 illustrates the neural architecture of a GoogleNet which consists of 22 layers: it starts with three regular convolutional layers followed by three groups of sub-networks -- the first group contains two Inception blocks, the second group has five, and the third group has two. It ends with an average pooling and a fully-connected layer.
@@ -130,7 +130,7 @@ The above model is the first version of GoogleNet or GoogelNet-v1. GoogleNet-v2
### ResNet
-Residual Network(ResNet)[15] won the 2015 championship on three ImageNet competitions -- image classification, object localization, and object detection. The main challenge in training deeper networks is that accuracy degrades with network depth. The authors of ResNet proposed a residual learning approach to ease the difficulty of training deeper networks. Based on the design ideas of BN, small convolutional kernels, full convolutional network, ResNets reformulate the layers as residual blocks, with each block containing two branches, one directly connecting input to the output, the other performing two to three convolutions and calculating the residual function with reference to the layer inputs. The outputs of these two branches are then added up.
+Residual Network(ResNet)[15] won the 2015 championship on three ImageNet competitions -- image classification, object localization, and object detection. The main challenge in training deeper networks is that accuracy degrades with network depth. The authors of ResNet proposed a residual learning approach to ease the difficulty of training deeper networks. Based on the design ideas of BN, small convolutional kernels, full convolutional network, ResNets reformulate the layers as residual blocks, with each block containing two branches, one directly connecting input to the output, the other performing two to three convolutions and calculating the residual function with reference to the layer's inputs. The outputs of these two branches are then added up.
Figure 9 illustrates the ResNet architecture. To the left is the basic building block, it consists of two 3x3 convolutional layers of the same channels. To the right is a Bottleneck block. The bottleneck is a 1x1 convolutional layer used to reduce dimension from 256 to 64. The other 1x1 convolutional layer is used to increase dimension from 64 to 256. Thus, the number of input and output channels of the middle 3x3 convolutional layer is 64, which is relatively small.
@@ -160,7 +160,7 @@ Figure 11. CIFAR10 dataset[21]
`paddle.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens` and `wmt14`, etc. There's no need to manually download and preprocess CIFAR-10.
-After issuing a command `python train.py`, training will start immediately. The following sections describe the details:
+After running the command `python train.py`, training will start immediately. The following sections wil describe in details.
## Model Structure
@@ -177,12 +177,11 @@ from resnet import resnet_cifar10
# PaddlePaddle init
paddle.init(use_gpu=False, trainer_count=1)
```
-
-As mentioned in section [Model Overview](#model-overview), here we provide the implementations of the VGG and ResNet models.
+Now we are going to walk you through the implementations of the VGG and ResNet.
### VGG
-First, we use a VGG network. Since the image size and amount of CIFAR10 are relatively small comparing to ImageNet, we use a small version of VGG network for CIFAR10. Convolution groups incorporate BN and dropout operations.
+Let's start with the VGG model. Since the image size and amount of CIFAR10 are relatively small comparing to ImageNet, we use a small version of VGG network for CIFAR10. Convolution groups incorporate BN and dropout operations.
1. Define input data and its dimension
@@ -233,7 +232,7 @@ First, we use a VGG network. Since the image size and amount of CIFAR10 are rela
return fc2
```
- 2.1. First, define a convolution block or conv_block. The default convolution kernel is 3x3, and the default pooling size is 2x2 with stride 2. Dropout specifies the probability in dropout operation. Function `img_conv_group` is defined in `paddle.networks` consisting of a series of `Conv->BN->ReLu->Dropout` and a `Pooling`.
+ 2.1. Firstly, it defines a convolution block or conv_block. The default convolution kernel is 3x3, and the default pooling size is 2x2 with stride 2. Dropout specifies the probability in dropout operation. Function `img_conv_group` is defined in `paddle.networks` consisting of a series of `Conv->BN->ReLu->Dropout` and a `Pooling`.
2.2. Five groups of convolutions. The first two groups perform two convolutions, while the last three groups perform three convolutions. The dropout rate of the last convolution in each group is set to 0, which means there is no dropout for this layer.
@@ -261,7 +260,7 @@ First, we use a VGG network. Since the image size and amount of CIFAR10 are rela
### ResNet
-The first, third and fourth steps of a ResNet are the same as a VGG. The second one is the main module.
+The first, third and fourth steps of a ResNet are the same as a VGG. The second step is the main module of ResNet.
```python
net = resnet_cifar10(image, depth=56)
@@ -344,7 +343,7 @@ def resnet_cifar10(ipt, depth=32):
### Define Parameters
-First, we create the model parameters according to the previous model configuration `cost`.
+Firstly, we create the model parameters according to the previous model configuration `cost`.
```python
# Create parameters
@@ -482,7 +481,7 @@ Figure 12. The error rate of VGG model on CIFAR10
## Application
-After training is done, users can use the trained model to classify images. The following code shows how to infer through `paddle.infer` interface. You can remove the comments to change the model name.
+After training is completed, users can use the trained model to classify images. The following code shows how to infer through `paddle.infer` interface. You can uncomment some lines from below to change the model name.
```python
from PIL import Image
@@ -520,7 +519,7 @@ print "Label of image/dog.png is: %d" % lab[0][0]
## Conclusion
-Traditional image classification methods have complicated frameworks that involve multiple stages of processing. In contrast, CNN models can be trained end-to-end with a significant increase in classification accuracy. In this chapter, we introduced three models -- VGG, GoogleNet, ResNet and provided PaddlePaddle config files for training VGG and ResNet on CIFAR10. We also explained how to perform prediction and feature extraction using the PaddlePaddle API. For other datasets such as ImageNet, the procedure for config and training are the same and you are welcome to give it a try.
+Traditional image classification methods involve multiple stages of processing, which has to utilize complex frameworks. Contrarily, CNN models can be trained end-to-end with a significant increase in classification accuracy. In this chapter, we introduced three models -- VGG, GoogleNet, ResNet and provided PaddlePaddle config files for training VGG and ResNet on CIFAR10. We also explained how to perform prediction and feature extraction using the PaddlePaddle API. For other datasets such as ImageNet, the procedure for config and training are the same and you are welcome to give it a try.
## Reference
diff --git a/03.image_classification/index.html b/03.image_classification/index.html
index bf021444bb21eaebecf6f21eee5ab5c527e8e688..5e859fed2d04806ae20f7f251dcd33ce817f3618 100644
--- a/03.image_classification/index.html
+++ b/03.image_classification/index.html
@@ -52,7 +52,7 @@ Compared to words, images provide much more vivid and easier to understand infor
Image classification is the task of distinguishing images in different categories based on their semantic meaning. It is a core problem in computer vision and is also the foundation of other higher level computer vision tasks such as object detection, image segmentation, object tracking, action recognition, etc. Image classification has applications in many areas such as face recognition, intelligent video analysis in security systems, traffic scene recognition in transportation systems, content-based image retrieval and automatic photo indexing in web services, image classification in medicine, etc.
-To classify an image we first encode the entire image using handcrafted or learned features and then determine the category using a classifier. Thus, feature extraction plays an important role in image classification. Prior to deep learning the BoW(Bag of Words) model was the most widely used method for classifying an image as well as an object. The BoW technique was introduced in Natural Language Processing where a training sentence is represented as a bag of words. In the context of image classification, the BoW model requires constructing a dictionary. The simplest BoW framework can be designed with three steps: **feature extraction**, **feature encoding** and **classifier design**.
+To classify an image we firstly encode the entire image using handcrafted or learned features and then determine the category using a classifier. Thus, feature extraction plays an important role in image classification. Prior to deep learning the BoW(Bag of Words) model was the most widely used method for classifying an image as well as an object. The BoW technique was introduced in Natural Language Processing where a training sentence is represented as a bag of words. In the context of image classification, the BoW model requires constructing a dictionary. The simplest BoW framework can be designed with three steps: **feature extraction**, **feature encoding** and **classifier design**.
Using Deep learning, image classification can be framed as a supervised or unsupervised learning problem that uses hierarchical features automatically without any need for manually crafted features from the image. In recent years, Convolutional Neural Networks (CNNs) have made significant progress in image classification. CNNs use raw image pixels as input, extract low-level and high-level abstract features through convolution operations, and directly output the classification results from the model. This style of end-to-end learning has lead to not only increased performance but also wider adoption various applications.
@@ -89,7 +89,7 @@ Figure 3. Disturbed images [22]
## Model Overview
-A large amount of research in image classification is built upon public datasets such as [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/), [ImageNet](http://image-net.org/) etc. Many image classification algorithms are usually evaluated and compared on these datasets. PASCAL VOC is a computer vision competition started in 2005, and ImageNet is a dataset for Large Scale Visual Recognition Challenge (ILSVRC) started in 2010. In this chapter, we introduce some image classification models from the submissions to these competitions.
+A large amount of research in image classification is built upon public datasets such as [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/), [ImageNet](http://image-net.org/) etc. Many image classification algorithms are usually evaluated and compared on top of these datasets. PASCAL VOC is a computer vision competition started in 2005, and ImageNet is a dataset for Large Scale Visual Recognition Challenge (ILSVRC) started in 2010. In this chapter, we introduce some image classification models from the submissions to these competitions.
Before 2012, traditional image classification was accomplished with the three steps described in the background section. A complete model construction usually involves the following stages: low-level feature extraction, feature encoding, spatial constraint or feature clustering, classifier design, model ensemble.
@@ -129,7 +129,7 @@ Figure 5. A CNN example [20]
- Dropout [10]: At each training stage, individual nodes are dropped out of the network with a certain probability. This improves the network's ability to generalize and avoids overfitting.
-Parameter updates at each layer during training causes input layer distributions to change and in turn requires hyper-parameters to be careful tuned. In 2015, Sergey Ioffe and Christian Szegedy proposed a Batch Normalization (BN) algorithm [14], which normalizes the features of each batch in a layer, and enables relatively stable distribution in each layer. Not only does BN algorithm act as a regularizer, but also reduces the need for careful hyper-parameter design. Experiments demonstrate that BN algorithm accelerates the training convergence and has been widely used in later deeper models.
+Parameter updates at each layer during training causes input layer distributions to change and in turn requires hyper-parameters to be carefully tuned. In 2015, Sergey Ioffe and Christian Szegedy proposed a Batch Normalization (BN) algorithm [14], which normalizes the features of each batch in a layer, and enables relatively stable distribution in each layer. Not only does BN algorithm act as a regularizer, but also reduces the need for careful hyper-parameter design. Experiments demonstrate that BN algorithm accelerates the training convergence and has been widely used in later deeper models.
In the following sections, we will introduce the following network architectures - VGG, GoogleNet and ResNets.
@@ -161,7 +161,7 @@ Figure 7. Inception block
GoogleNet consists of multiple stacked Inception blocks followed by an avg-pooling layer as in NIN instead of traditional fully connected layers. The difference between GoogleNet and NIN is that GoogleNet adds a fully connected layer after avg-pooling layer to output a vector of category size. Besides these two characteristics, the features from middle layers of a GoogleNet are also very discriminative. Therefore, GoogeleNet inserts two auxiliary classifiers in the model for enhancing gradient and regularization when doing backpropagation. The loss function of the whole network is the weighted sum of these three classifiers.
-Figure 8 illustrates the neural architecture of a GoogleNet which consists of 22 layers: it starts with three regular convolutional layers followed by three groups of sub-networks -- the first group contains two Inception blocks, the second one five, and the third one two. It ends up with an average pooling and a fully-connected layer.
+Figure 8 illustrates the neural architecture of a GoogleNet which consists of 22 layers: it starts with three regular convolutional layers followed by three groups of sub-networks -- the first group contains two Inception blocks, the second group has five, and the third group has two. It ends with an average pooling and a fully-connected layer.
@@ -172,7 +172,7 @@ The above model is the first version of GoogleNet or GoogelNet-v1. GoogleNet-v2
### ResNet
-Residual Network(ResNet)[15] won the 2015 championship on three ImageNet competitions -- image classification, object localization, and object detection. The main challenge in training deeper networks is that accuracy degrades with network depth. The authors of ResNet proposed a residual learning approach to ease the difficulty of training deeper networks. Based on the design ideas of BN, small convolutional kernels, full convolutional network, ResNets reformulate the layers as residual blocks, with each block containing two branches, one directly connecting input to the output, the other performing two to three convolutions and calculating the residual function with reference to the layer inputs. The outputs of these two branches are then added up.
+Residual Network(ResNet)[15] won the 2015 championship on three ImageNet competitions -- image classification, object localization, and object detection. The main challenge in training deeper networks is that accuracy degrades with network depth. The authors of ResNet proposed a residual learning approach to ease the difficulty of training deeper networks. Based on the design ideas of BN, small convolutional kernels, full convolutional network, ResNets reformulate the layers as residual blocks, with each block containing two branches, one directly connecting input to the output, the other performing two to three convolutions and calculating the residual function with reference to the layer's inputs. The outputs of these two branches are then added up.
Figure 9 illustrates the ResNet architecture. To the left is the basic building block, it consists of two 3x3 convolutional layers of the same channels. To the right is a Bottleneck block. The bottleneck is a 1x1 convolutional layer used to reduce dimension from 256 to 64. The other 1x1 convolutional layer is used to increase dimension from 64 to 256. Thus, the number of input and output channels of the middle 3x3 convolutional layer is 64, which is relatively small.
@@ -202,7 +202,7 @@ Figure 11. CIFAR10 dataset[21]
`paddle.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens` and `wmt14`, etc. There's no need to manually download and preprocess CIFAR-10.
-After issuing a command `python train.py`, training will start immediately. The following sections describe the details:
+After running the command `python train.py`, training will start immediately. The following sections wil describe in details.
## Model Structure
@@ -219,12 +219,11 @@ from resnet import resnet_cifar10
# PaddlePaddle init
paddle.init(use_gpu=False, trainer_count=1)
```
-
-As mentioned in section [Model Overview](#model-overview), here we provide the implementations of the VGG and ResNet models.
+Now we are going to walk you through the implementations of the VGG and ResNet.
### VGG
-First, we use a VGG network. Since the image size and amount of CIFAR10 are relatively small comparing to ImageNet, we use a small version of VGG network for CIFAR10. Convolution groups incorporate BN and dropout operations.
+Let's start with the VGG model. Since the image size and amount of CIFAR10 are relatively small comparing to ImageNet, we use a small version of VGG network for CIFAR10. Convolution groups incorporate BN and dropout operations.
1. Define input data and its dimension
@@ -275,7 +274,7 @@ First, we use a VGG network. Since the image size and amount of CIFAR10 are rela
return fc2
```
- 2.1. First, define a convolution block or conv_block. The default convolution kernel is 3x3, and the default pooling size is 2x2 with stride 2. Dropout specifies the probability in dropout operation. Function `img_conv_group` is defined in `paddle.networks` consisting of a series of `Conv->BN->ReLu->Dropout` and a `Pooling`.
+ 2.1. Firstly, it defines a convolution block or conv_block. The default convolution kernel is 3x3, and the default pooling size is 2x2 with stride 2. Dropout specifies the probability in dropout operation. Function `img_conv_group` is defined in `paddle.networks` consisting of a series of `Conv->BN->ReLu->Dropout` and a `Pooling`.
2.2. Five groups of convolutions. The first two groups perform two convolutions, while the last three groups perform three convolutions. The dropout rate of the last convolution in each group is set to 0, which means there is no dropout for this layer.
@@ -303,7 +302,7 @@ First, we use a VGG network. Since the image size and amount of CIFAR10 are rela
### ResNet
-The first, third and fourth steps of a ResNet are the same as a VGG. The second one is the main module.
+The first, third and fourth steps of a ResNet are the same as a VGG. The second step is the main module of ResNet.
```python
net = resnet_cifar10(image, depth=56)
@@ -386,7 +385,7 @@ def resnet_cifar10(ipt, depth=32):
### Define Parameters
-First, we create the model parameters according to the previous model configuration `cost`.
+Firstly, we create the model parameters according to the previous model configuration `cost`.
```python
# Create parameters
@@ -524,7 +523,7 @@ Figure 12. The error rate of VGG model on CIFAR10
## Application
-After training is done, users can use the trained model to classify images. The following code shows how to infer through `paddle.infer` interface. You can remove the comments to change the model name.
+After training is completed, users can use the trained model to classify images. The following code shows how to infer through `paddle.infer` interface. You can uncomment some lines from below to change the model name.
```python
from PIL import Image
@@ -562,7 +561,7 @@ print "Label of image/dog.png is: %d" % lab[0][0]
## Conclusion
-Traditional image classification methods have complicated frameworks that involve multiple stages of processing. In contrast, CNN models can be trained end-to-end with a significant increase in classification accuracy. In this chapter, we introduced three models -- VGG, GoogleNet, ResNet and provided PaddlePaddle config files for training VGG and ResNet on CIFAR10. We also explained how to perform prediction and feature extraction using the PaddlePaddle API. For other datasets such as ImageNet, the procedure for config and training are the same and you are welcome to give it a try.
+Traditional image classification methods involve multiple stages of processing, which has to utilize complex frameworks. Contrarily, CNN models can be trained end-to-end with a significant increase in classification accuracy. In this chapter, we introduced three models -- VGG, GoogleNet, ResNet and provided PaddlePaddle config files for training VGG and ResNet on CIFAR10. We also explained how to perform prediction and feature extraction using the PaddlePaddle API. For other datasets such as ImageNet, the procedure for config and training are the same and you are welcome to give it a try.
## Reference