提交 cbc00baa 编写于 作者: H hutuxian 提交者: GitHub

Revert "change -1 to None in data's shape (#819)"

This reverts commit 77fe59e5.
上级 00c8ae7f
...@@ -254,7 +254,7 @@ def get_usr_combined_features(): ...@@ -254,7 +254,7 @@ def get_usr_combined_features():
USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1 USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1
uid = fluid.data(name='user_id', shape=[None], dtype='int64') uid = fluid.data(name='user_id', shape=[-1], dtype='int64')
usr_emb = fluid.embedding( usr_emb = fluid.embedding(
input=uid, input=uid,
...@@ -267,7 +267,7 @@ def get_usr_combined_features(): ...@@ -267,7 +267,7 @@ def get_usr_combined_features():
USR_GENDER_DICT_SIZE = 2 USR_GENDER_DICT_SIZE = 2
usr_gender_id = fluid.data(name='gender_id', shape=[None], dtype='int64') usr_gender_id = fluid.data(name='gender_id', shape=[-1], dtype='int64')
usr_gender_emb = fluid.embedding( usr_gender_emb = fluid.embedding(
input=usr_gender_id, input=usr_gender_id,
...@@ -278,7 +278,7 @@ def get_usr_combined_features(): ...@@ -278,7 +278,7 @@ def get_usr_combined_features():
usr_gender_fc = layers.fc(input=usr_gender_emb, size=16) usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table) USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
usr_age_id = fluid.data(name='age_id', shape=[None], dtype="int64") usr_age_id = fluid.data(name='age_id', shape=[-1], dtype="int64")
usr_age_emb = fluid.embedding( usr_age_emb = fluid.embedding(
input=usr_age_id, input=usr_age_id,
...@@ -289,7 +289,7 @@ def get_usr_combined_features(): ...@@ -289,7 +289,7 @@ def get_usr_combined_features():
usr_age_fc = layers.fc(input=usr_age_emb, size=16) usr_age_fc = layers.fc(input=usr_age_emb, size=16)
USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1 USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
usr_job_id = fluid.data(name='job_id', shape=[None], dtype="int64") usr_job_id = fluid.data(name='job_id', shape=[-1], dtype="int64")
usr_job_emb = fluid.embedding( usr_job_emb = fluid.embedding(
input=usr_job_id, input=usr_job_id,
...@@ -320,7 +320,7 @@ def get_mov_combined_features(): ...@@ -320,7 +320,7 @@ def get_mov_combined_features():
MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1 MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1
mov_id = fluid.data(name='movie_id', shape=[None], dtype='int64') mov_id = fluid.data(name='movie_id', shape=[-1], dtype='int64')
mov_emb = fluid.embedding( mov_emb = fluid.embedding(
input=mov_id, input=mov_id,
...@@ -334,7 +334,7 @@ def get_mov_combined_features(): ...@@ -334,7 +334,7 @@ def get_mov_combined_features():
CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories()) CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())
category_id = fluid.data( category_id = fluid.data(
name='category_id', shape=[None], dtype='int64', lod_level=1) name='category_id', shape=[-1], dtype='int64', lod_level=1)
mov_categories_emb = fluid.embedding( mov_categories_emb = fluid.embedding(
input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE) input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)
...@@ -345,7 +345,7 @@ def get_mov_combined_features(): ...@@ -345,7 +345,7 @@ def get_mov_combined_features():
MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict()) MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())
mov_title_id = fluid.data( mov_title_id = fluid.data(
name='movie_title', shape=[None], dtype='int64', lod_level=1) name='movie_title', shape=[-1], dtype='int64', lod_level=1)
mov_title_emb = fluid.embedding( mov_title_emb = fluid.embedding(
input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE) input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)
...@@ -390,7 +390,7 @@ def train_program(): ...@@ -390,7 +390,7 @@ def train_program():
scale_infer = inference_program() scale_infer = inference_program()
label = fluid.data(name='score', shape=[None, 1], dtype='float32') label = fluid.data(name='score', shape=[-1, 1], dtype='float32')
square_cost = layers.square_error_cost(input=scale_infer, label=label) square_cost = layers.square_error_cost(input=scale_infer, label=label)
avg_cost = layers.mean(square_cost) avg_cost = layers.mean(square_cost)
......
...@@ -241,7 +241,7 @@ def get_usr_combined_features(): ...@@ -241,7 +241,7 @@ def get_usr_combined_features():
USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1 USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1
uid = fluid.data(name='user_id', shape=[None], dtype='int64') uid = fluid.data(name='user_id', shape=[-1], dtype='int64')
usr_emb = fluid.embedding( usr_emb = fluid.embedding(
input=uid, input=uid,
...@@ -254,7 +254,7 @@ def get_usr_combined_features(): ...@@ -254,7 +254,7 @@ def get_usr_combined_features():
USR_GENDER_DICT_SIZE = 2 USR_GENDER_DICT_SIZE = 2
usr_gender_id = fluid.data(name='gender_id', shape=[None], dtype='int64') usr_gender_id = fluid.data(name='gender_id', shape=[-1], dtype='int64')
usr_gender_emb = fluid.embedding( usr_gender_emb = fluid.embedding(
input=usr_gender_id, input=usr_gender_id,
...@@ -265,7 +265,7 @@ def get_usr_combined_features(): ...@@ -265,7 +265,7 @@ def get_usr_combined_features():
usr_gender_fc = layers.fc(input=usr_gender_emb, size=16) usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table) USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
usr_age_id = fluid.data(name='age_id', shape=[None], dtype="int64") usr_age_id = fluid.data(name='age_id', shape=[-1], dtype="int64")
usr_age_emb = fluid.embedding( usr_age_emb = fluid.embedding(
input=usr_age_id, input=usr_age_id,
...@@ -276,7 +276,7 @@ def get_usr_combined_features(): ...@@ -276,7 +276,7 @@ def get_usr_combined_features():
usr_age_fc = layers.fc(input=usr_age_emb, size=16) usr_age_fc = layers.fc(input=usr_age_emb, size=16)
USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1 USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
usr_job_id = fluid.data(name='job_id', shape=[None], dtype="int64") usr_job_id = fluid.data(name='job_id', shape=[-1], dtype="int64")
usr_job_emb = fluid.embedding( usr_job_emb = fluid.embedding(
input=usr_job_id, input=usr_job_id,
...@@ -307,7 +307,7 @@ def get_mov_combined_features(): ...@@ -307,7 +307,7 @@ def get_mov_combined_features():
MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1 MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1
mov_id = fluid.data(name='movie_id', shape=[None], dtype='int64') mov_id = fluid.data(name='movie_id', shape=[-1], dtype='int64')
mov_emb = fluid.embedding( mov_emb = fluid.embedding(
input=mov_id, input=mov_id,
...@@ -321,7 +321,7 @@ def get_mov_combined_features(): ...@@ -321,7 +321,7 @@ def get_mov_combined_features():
CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories()) CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())
category_id = fluid.data( category_id = fluid.data(
name='category_id', shape=[None], dtype='int64', lod_level=1) name='category_id', shape=[-1], dtype='int64', lod_level=1)
mov_categories_emb = fluid.embedding( mov_categories_emb = fluid.embedding(
input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE) input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)
...@@ -332,7 +332,7 @@ def get_mov_combined_features(): ...@@ -332,7 +332,7 @@ def get_mov_combined_features():
MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict()) MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())
mov_title_id = fluid.data( mov_title_id = fluid.data(
name='movie_title', shape=[None], dtype='int64', lod_level=1) name='movie_title', shape=[-1], dtype='int64', lod_level=1)
mov_title_emb = fluid.embedding( mov_title_emb = fluid.embedding(
input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE) input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)
...@@ -378,7 +378,7 @@ def train_program(): ...@@ -378,7 +378,7 @@ def train_program():
scale_infer = inference_program() scale_infer = inference_program()
label = fluid.data(name='score', shape=[None, 1], dtype='float32') label = fluid.data(name='score', shape=[-1, 1], dtype='float32')
square_cost = layers.square_error_cost(input=scale_infer, label=label) square_cost = layers.square_error_cost(input=scale_infer, label=label)
avg_cost = layers.mean(square_cost) avg_cost = layers.mean(square_cost)
......
...@@ -296,7 +296,7 @@ def get_usr_combined_features(): ...@@ -296,7 +296,7 @@ def get_usr_combined_features():
USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1 USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1
uid = fluid.data(name='user_id', shape=[None], dtype='int64') uid = fluid.data(name='user_id', shape=[-1], dtype='int64')
usr_emb = fluid.embedding( usr_emb = fluid.embedding(
input=uid, input=uid,
...@@ -309,7 +309,7 @@ def get_usr_combined_features(): ...@@ -309,7 +309,7 @@ def get_usr_combined_features():
USR_GENDER_DICT_SIZE = 2 USR_GENDER_DICT_SIZE = 2
usr_gender_id = fluid.data(name='gender_id', shape=[None], dtype='int64') usr_gender_id = fluid.data(name='gender_id', shape=[-1], dtype='int64')
usr_gender_emb = fluid.embedding( usr_gender_emb = fluid.embedding(
input=usr_gender_id, input=usr_gender_id,
...@@ -320,7 +320,7 @@ def get_usr_combined_features(): ...@@ -320,7 +320,7 @@ def get_usr_combined_features():
usr_gender_fc = layers.fc(input=usr_gender_emb, size=16) usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table) USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
usr_age_id = fluid.data(name='age_id', shape=[None], dtype="int64") usr_age_id = fluid.data(name='age_id', shape=[-1], dtype="int64")
usr_age_emb = fluid.embedding( usr_age_emb = fluid.embedding(
input=usr_age_id, input=usr_age_id,
...@@ -331,7 +331,7 @@ def get_usr_combined_features(): ...@@ -331,7 +331,7 @@ def get_usr_combined_features():
usr_age_fc = layers.fc(input=usr_age_emb, size=16) usr_age_fc = layers.fc(input=usr_age_emb, size=16)
USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1 USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
usr_job_id = fluid.data(name='job_id', shape=[None], dtype="int64") usr_job_id = fluid.data(name='job_id', shape=[-1], dtype="int64")
usr_job_emb = fluid.embedding( usr_job_emb = fluid.embedding(
input=usr_job_id, input=usr_job_id,
...@@ -362,7 +362,7 @@ def get_mov_combined_features(): ...@@ -362,7 +362,7 @@ def get_mov_combined_features():
MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1 MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1
mov_id = fluid.data(name='movie_id', shape=[None], dtype='int64') mov_id = fluid.data(name='movie_id', shape=[-1], dtype='int64')
mov_emb = fluid.embedding( mov_emb = fluid.embedding(
input=mov_id, input=mov_id,
...@@ -376,7 +376,7 @@ def get_mov_combined_features(): ...@@ -376,7 +376,7 @@ def get_mov_combined_features():
CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories()) CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())
category_id = fluid.data( category_id = fluid.data(
name='category_id', shape=[None], dtype='int64', lod_level=1) name='category_id', shape=[-1], dtype='int64', lod_level=1)
mov_categories_emb = fluid.embedding( mov_categories_emb = fluid.embedding(
input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE) input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)
...@@ -387,7 +387,7 @@ def get_mov_combined_features(): ...@@ -387,7 +387,7 @@ def get_mov_combined_features():
MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict()) MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())
mov_title_id = fluid.data( mov_title_id = fluid.data(
name='movie_title', shape=[None], dtype='int64', lod_level=1) name='movie_title', shape=[-1], dtype='int64', lod_level=1)
mov_title_emb = fluid.embedding( mov_title_emb = fluid.embedding(
input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE) input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)
...@@ -432,7 +432,7 @@ def train_program(): ...@@ -432,7 +432,7 @@ def train_program():
scale_infer = inference_program() scale_infer = inference_program()
label = fluid.data(name='score', shape=[None, 1], dtype='float32') label = fluid.data(name='score', shape=[-1, 1], dtype='float32')
square_cost = layers.square_error_cost(input=scale_infer, label=label) square_cost = layers.square_error_cost(input=scale_infer, label=label)
avg_cost = layers.mean(square_cost) avg_cost = layers.mean(square_cost)
......
...@@ -283,7 +283,7 @@ def get_usr_combined_features(): ...@@ -283,7 +283,7 @@ def get_usr_combined_features():
USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1 USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1
uid = fluid.data(name='user_id', shape=[None], dtype='int64') uid = fluid.data(name='user_id', shape=[-1], dtype='int64')
usr_emb = fluid.embedding( usr_emb = fluid.embedding(
input=uid, input=uid,
...@@ -296,7 +296,7 @@ def get_usr_combined_features(): ...@@ -296,7 +296,7 @@ def get_usr_combined_features():
USR_GENDER_DICT_SIZE = 2 USR_GENDER_DICT_SIZE = 2
usr_gender_id = fluid.data(name='gender_id', shape=[None], dtype='int64') usr_gender_id = fluid.data(name='gender_id', shape=[-1], dtype='int64')
usr_gender_emb = fluid.embedding( usr_gender_emb = fluid.embedding(
input=usr_gender_id, input=usr_gender_id,
...@@ -307,7 +307,7 @@ def get_usr_combined_features(): ...@@ -307,7 +307,7 @@ def get_usr_combined_features():
usr_gender_fc = layers.fc(input=usr_gender_emb, size=16) usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table) USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
usr_age_id = fluid.data(name='age_id', shape=[None], dtype="int64") usr_age_id = fluid.data(name='age_id', shape=[-1], dtype="int64")
usr_age_emb = fluid.embedding( usr_age_emb = fluid.embedding(
input=usr_age_id, input=usr_age_id,
...@@ -318,7 +318,7 @@ def get_usr_combined_features(): ...@@ -318,7 +318,7 @@ def get_usr_combined_features():
usr_age_fc = layers.fc(input=usr_age_emb, size=16) usr_age_fc = layers.fc(input=usr_age_emb, size=16)
USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1 USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
usr_job_id = fluid.data(name='job_id', shape=[None], dtype="int64") usr_job_id = fluid.data(name='job_id', shape=[-1], dtype="int64")
usr_job_emb = fluid.embedding( usr_job_emb = fluid.embedding(
input=usr_job_id, input=usr_job_id,
...@@ -349,7 +349,7 @@ def get_mov_combined_features(): ...@@ -349,7 +349,7 @@ def get_mov_combined_features():
MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1 MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1
mov_id = fluid.data(name='movie_id', shape=[None], dtype='int64') mov_id = fluid.data(name='movie_id', shape=[-1], dtype='int64')
mov_emb = fluid.embedding( mov_emb = fluid.embedding(
input=mov_id, input=mov_id,
...@@ -363,7 +363,7 @@ def get_mov_combined_features(): ...@@ -363,7 +363,7 @@ def get_mov_combined_features():
CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories()) CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())
category_id = fluid.data( category_id = fluid.data(
name='category_id', shape=[None], dtype='int64', lod_level=1) name='category_id', shape=[-1], dtype='int64', lod_level=1)
mov_categories_emb = fluid.embedding( mov_categories_emb = fluid.embedding(
input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE) input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)
...@@ -374,7 +374,7 @@ def get_mov_combined_features(): ...@@ -374,7 +374,7 @@ def get_mov_combined_features():
MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict()) MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())
mov_title_id = fluid.data( mov_title_id = fluid.data(
name='movie_title', shape=[None], dtype='int64', lod_level=1) name='movie_title', shape=[-1], dtype='int64', lod_level=1)
mov_title_emb = fluid.embedding( mov_title_emb = fluid.embedding(
input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE) input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)
...@@ -420,7 +420,7 @@ def train_program(): ...@@ -420,7 +420,7 @@ def train_program():
scale_infer = inference_program() scale_infer = inference_program()
label = fluid.data(name='score', shape=[None, 1], dtype='float32') label = fluid.data(name='score', shape=[-1, 1], dtype='float32')
square_cost = layers.square_error_cost(input=scale_infer, label=label) square_cost = layers.square_error_cost(input=scale_infer, label=label)
avg_cost = layers.mean(square_cost) avg_cost = layers.mean(square_cost)
......
...@@ -44,7 +44,7 @@ def get_usr_combined_features(): ...@@ -44,7 +44,7 @@ def get_usr_combined_features():
USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1 USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1
uid = fluid.data(name='user_id', shape=[None], dtype='int64') uid = fluid.data(name='user_id', shape=[-1], dtype='int64')
usr_emb = fluid.embedding( usr_emb = fluid.embedding(
input=uid, input=uid,
...@@ -57,7 +57,7 @@ def get_usr_combined_features(): ...@@ -57,7 +57,7 @@ def get_usr_combined_features():
USR_GENDER_DICT_SIZE = 2 USR_GENDER_DICT_SIZE = 2
usr_gender_id = fluid.data(name='gender_id', shape=[None], dtype='int64') usr_gender_id = fluid.data(name='gender_id', shape=[-1], dtype='int64')
usr_gender_emb = fluid.embedding( usr_gender_emb = fluid.embedding(
input=usr_gender_id, input=usr_gender_id,
...@@ -68,7 +68,7 @@ def get_usr_combined_features(): ...@@ -68,7 +68,7 @@ def get_usr_combined_features():
usr_gender_fc = layers.fc(input=usr_gender_emb, size=16) usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table) USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
usr_age_id = fluid.data(name='age_id', shape=[None], dtype="int64") usr_age_id = fluid.data(name='age_id', shape=[-1], dtype="int64")
usr_age_emb = fluid.embedding( usr_age_emb = fluid.embedding(
input=usr_age_id, input=usr_age_id,
...@@ -79,7 +79,7 @@ def get_usr_combined_features(): ...@@ -79,7 +79,7 @@ def get_usr_combined_features():
usr_age_fc = layers.fc(input=usr_age_emb, size=16) usr_age_fc = layers.fc(input=usr_age_emb, size=16)
USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1 USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
usr_job_id = fluid.data(name='job_id', shape=[None], dtype="int64") usr_job_id = fluid.data(name='job_id', shape=[-1], dtype="int64")
usr_job_emb = fluid.embedding( usr_job_emb = fluid.embedding(
input=usr_job_id, input=usr_job_id,
...@@ -101,7 +101,7 @@ def get_mov_combined_features(): ...@@ -101,7 +101,7 @@ def get_mov_combined_features():
MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1 MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1
mov_id = fluid.data(name='movie_id', shape=[None], dtype='int64') mov_id = fluid.data(name='movie_id', shape=[-1], dtype='int64')
mov_emb = fluid.embedding( mov_emb = fluid.embedding(
input=mov_id, input=mov_id,
...@@ -115,7 +115,7 @@ def get_mov_combined_features(): ...@@ -115,7 +115,7 @@ def get_mov_combined_features():
CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories()) CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())
category_id = fluid.data( category_id = fluid.data(
name='category_id', shape=[None], dtype='int64', lod_level=1) name='category_id', shape=[-1], dtype='int64', lod_level=1)
mov_categories_emb = fluid.embedding( mov_categories_emb = fluid.embedding(
input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE) input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)
...@@ -126,7 +126,7 @@ def get_mov_combined_features(): ...@@ -126,7 +126,7 @@ def get_mov_combined_features():
MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict()) MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())
mov_title_id = fluid.data( mov_title_id = fluid.data(
name='movie_title', shape=[None], dtype='int64', lod_level=1) name='movie_title', shape=[-1], dtype='int64', lod_level=1)
mov_title_emb = fluid.embedding( mov_title_emb = fluid.embedding(
input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE) input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)
...@@ -153,7 +153,7 @@ def inference_program(): ...@@ -153,7 +153,7 @@ def inference_program():
inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features) inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
scale_infer = layers.scale(x=inference, scale=5.0) scale_infer = layers.scale(x=inference, scale=5.0)
label = fluid.data(name='score', shape=[None, 1], dtype='float32') label = fluid.data(name='score', shape=[-1, 1], dtype='float32')
square_cost = layers.square_error_cost(input=scale_infer, label=label) square_cost = layers.square_error_cost(input=scale_infer, label=label)
avg_cost = layers.mean(square_cost) avg_cost = layers.mean(square_cost)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册