diff --git a/01.fit_a_line/README.en.md b/01.fit_a_line/README.en.md index 67bff40b73d02b02e54a6e7d555b4fbe4984d23b..6d06d6a0e9af1898c56a101122d9d8b20bc23526 100644 --- a/01.fit_a_line/README.en.md +++ b/01.fit_a_line/README.en.md @@ -1,7 +1,7 @@ # Linear Regression Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example. -The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst). +The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md). ## Problem Setup Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity. diff --git a/01.fit_a_line/README.md b/01.fit_a_line/README.md index b4516851e7e106750740557ccfbf31c8f1e4f5d0..1b438fcffc281b5c07b77be375bd1ff63fadd05a 100644 --- a/01.fit_a_line/README.md +++ b/01.fit_a_line/README.md @@ -1,7 +1,7 @@ # 线性回归 让我们从经典的线性回归(Linear Regression \[[1](#参考文献)\])模型开始这份教程。在这一章里,你将使用真实的数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念。 -本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。 +本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md)。 ## 背景介绍 给定一个大小为$n$的数据集 ${\{y_{i}, x_{i1}, ..., x_{id}\}}_{i=1}^{n}$,其中$x_{i1}, \ldots, x_{id}$是第$i$个样本$d$个属性上的取值,$y_i$是该样本待预测的目标。线性回归模型假设目标$y_i$可以被属性间的线性组合描述,即 diff --git a/01.fit_a_line/index.en.html b/01.fit_a_line/index.en.html index 0c8fe2e9afc637fe889270d960bd5a1e234df9cf..0992be0c269c125094ed77c1fcc53dcb5aa57618 100644 --- a/01.fit_a_line/index.en.html +++ b/01.fit_a_line/index.en.html @@ -43,7 +43,7 @@ # Linear Regression Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example. -The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst). +The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md). ## Problem Setup Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity. diff --git a/01.fit_a_line/index.html b/01.fit_a_line/index.html index efa0cc70e3671fa049e75798ef73268a5feaca28..85a972062b2fec7f80ac14f3ccb980d8b9811f9e 100644 --- a/01.fit_a_line/index.html +++ b/01.fit_a_line/index.html @@ -43,7 +43,7 @@ # 线性回归 让我们从经典的线性回归(Linear Regression \[[1](#参考文献)\])模型开始这份教程。在这一章里,你将使用真实的数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念。 -本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。 +本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md)。 ## 背景介绍 给定一个大小为$n$的数据集 ${\{y_{i}, x_{i1}, ..., x_{id}\}}_{i=1}^{n}$,其中$x_{i1}, \ldots, x_{id}$是第$i$个样本$d$个属性上的取值,$y_i$是该样本待预测的目标。线性回归模型假设目标$y_i$可以被属性间的线性组合描述,即