提交 b258ddc5 编写于 作者: L livc

Merge https://github.com/PaddlePaddle/book into recommender_sys

data/train.list
data/test.list
data/simple-examples*
此差异已折叠。
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example:
python calculate_dis.py DICTIONARYTXT FEATURETXT
Required arguments:
DICTIONARYTXT the dictionary generated in dataprovider
FEATURETXT the text format word feature, one line for one word
"""
import numpy as np
from argparse import ArgumentParser
def load_dict(fdict):
words = [line.strip() for line in fdict.readlines()]
dictionary = dict(zip(words, xrange(len(words))))
return dictionary
def load_emb(femb):
feaBank = []
flag_firstline = True
for line in femb:
if flag_firstline:
flag_firstline = False
continue
fea = np.array([float(x) for x in line.strip().split(',')])
normfea = fea * 1.0 / np.linalg.norm(fea)
feaBank.append(normfea)
return feaBank
def calcos(id1, id2, Fea):
f1 = Fea[id1]
f2 = Fea[id2]
return np.dot(f1.transpose(), f2)
def get_wordidx(w, Dict):
if w not in Dict:
print 'ERROR: %s not in the dictionary' % w
return -1
return Dict[w]
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('dict', help='dictionary file')
parser.add_argument('fea', help='feature file')
args = parser.parse_args()
with open(args.dict) as fdict:
word_dict = load_dict(fdict)
with open(args.fea) as ffea:
word_fea = load_emb(ffea)
while True:
w1, w2 = raw_input("please input two words: ").split()
w1_id = get_wordidx(w1, word_dict)
w2_id = get_wordidx(w2, word_dict)
if w1_id == -1 or w2_id == -1:
continue
print 'similarity: %s' % (calcos(w1_id, w2_id, word_fea))
#!/bin/bash
set -e
wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
tar -zxf simple-examples.tgz
echo `pwd`/simple-examples/data/ptb.train.txt > train.list
echo `pwd`/simple-examples/data/ptb.valid.txt > test.list
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer.PyDataProvider2 import *
import collections
import logging
import pdb
logging.basicConfig(
format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
N = 5 # Ngram
cutoff = 50 # select words with frequency > cutoff to dictionary
def build_dict(ftrain, fdict):
sentences = []
with open(ftrain) as fin:
for line in fin:
line = ['<s>'] + line.strip().split() + ['<e>']
sentences += line
wordfreq = collections.Counter(sentences)
wordfreq = filter(lambda x: x[1] > cutoff, wordfreq.items())
dictionary = sorted(wordfreq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*dictionary))
for word in words:
print >> fdict, word
word_idx = dict(zip(words, xrange(len(words))))
logger.info("Dictionary size=%s" % len(words))
return word_idx
def initializer(settings, srcText, dictfile, **xargs):
with open(dictfile, 'w') as fdict:
settings.dicts = build_dict(srcText, fdict)
input_types = []
for i in xrange(N):
input_types.append(integer_value(len(settings.dicts)))
settings.input_types = input_types
@provider(init_hook=initializer)
def process(settings, filename):
UNKID = settings.dicts['<unk>']
with open(filename) as fin:
for line in fin:
line = ['<s>'] * (N - 1) + line.strip().split() + ['<e>']
line = [settings.dicts.get(w, UNKID) for w in line]
for i in range(N, len(line) + 1):
yield line[i - N:i]
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example:
python format_convert.py --b2t -i INPUT -o OUTPUT -d DIM
python format_convert.py --t2b -i INPUT -o OUTPUT
Options:
-h, --help show this help message and exit
--b2t convert parameter file of embedding model from binary to text
--t2b convert parameter file of embedding model from text to binary
-i INPUT input parameter file name
-o OUTPUT output parameter file name
-d DIM dimension of parameter
"""
from optparse import OptionParser
import struct
def binary2text(input, output, paraDim):
"""
Convert a binary parameter file of embedding model to be a text file.
input: the name of input binary parameter file, the format is:
1) the first 16 bytes is filehead:
version(4 bytes): version of paddle, default = 0
floatSize(4 bytes): sizeof(float) = 4
paraCount(8 bytes): total number of parameter
2) the next (paraCount * 4) bytes is parameters, each has 4 bytes
output: the name of output text parameter file, for example:
0,4,32156096
-0.7845433,1.1937413,-0.1704215,...
0.0000909,0.0009465,-0.0008813,...
...
the format is:
1) the first line is filehead:
version=0, floatSize=4, paraCount=32156096
2) other lines print the paramters
a) each line prints paraDim paramters splitted by ','
b) there is paraCount/paraDim lines (embedding words)
paraDim: dimension of parameters
"""
fi = open(input, "rb")
fo = open(output, "w")
"""
"""
version, floatSize, paraCount = struct.unpack("iil", fi.read(16))
newHead = ','.join([str(version), str(floatSize), str(paraCount)])
print >> fo, newHead
bytes = 4 * int(paraDim)
format = "%df" % int(paraDim)
context = fi.read(bytes)
line = 0
while context:
numbers = struct.unpack(format, context)
lst = []
for i in numbers:
lst.append('%8.7f' % i)
print >> fo, ','.join(lst)
context = fi.read(bytes)
line += 1
fi.close()
fo.close()
print "binary2text finish, total", line, "lines"
def get_para_count(input):
"""
Compute the total number of embedding parameters in input text file.
input: the name of input text file
"""
numRows = 1
paraDim = 0
with open(input) as f:
line = f.readline()
paraDim = len(line.split(","))
for line in f:
numRows += 1
return numRows * paraDim
def text2binary(input, output, paddle_head=True):
"""
Convert a text parameter file of embedding model to be a binary file.
input: the name of input text parameter file, for example:
-0.7845433,1.1937413,-0.1704215,...
0.0000909,0.0009465,-0.0008813,...
...
the format is:
1) it doesn't have filehead
2) each line stores the same dimension of parameters,
the separator is commas ','
output: the name of output binary parameter file, the format is:
1) the first 16 bytes is filehead:
version(4 bytes), floatSize(4 bytes), paraCount(8 bytes)
2) the next (paraCount * 4) bytes is parameters, each has 4 bytes
"""
fi = open(input, "r")
fo = open(output, "wb")
newHead = struct.pack("iil", 0, 4, get_para_count(input))
fo.write(newHead)
count = 0
for line in fi:
line = line.strip().split(",")
for i in range(0, len(line)):
binary_data = struct.pack("f", float(line[i]))
fo.write(binary_data)
count += 1
fi.close()
fo.close()
print "text2binary finish, total", count, "lines"
def main():
"""
Main entry for running format_convert.py
"""
usage = "usage: \n" \
"python %prog --b2t -i INPUT -o OUTPUT -d DIM \n" \
"python %prog --t2b -i INPUT -o OUTPUT"
parser = OptionParser(usage)
parser.add_option(
"--b2t",
action="store_true",
help="convert parameter file of embedding model from binary to text")
parser.add_option(
"--t2b",
action="store_true",
help="convert parameter file of embedding model from text to binary")
parser.add_option(
"-i", action="store", dest="input", help="input parameter file name")
parser.add_option(
"-o", action="store", dest="output", help="output parameter file name")
parser.add_option(
"-d", action="store", dest="dim", help="dimension of parameter")
(options, args) = parser.parse_args()
if options.b2t:
binary2text(options.input, options.output, options.dim)
if options.t2b:
text2binary(options.input, options.output)
if __name__ == '__main__':
main()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
import math
#################### Data Configure ####################
args = {
'srcText': 'data/simple-examples/data/ptb.train.txt',
'dictfile': 'data/vocabulary.txt'
}
define_py_data_sources2(
train_list="data/train.list",
test_list="data/test.list",
module="dataprovider",
obj="process",
args=args)
settings(
batch_size=100, regularization=L2Regularization(8e-4), learning_rate=3e-3)
dictsize = 1953
embsize = 32
hiddensize = 256
firstword = data_layer(name="firstw", size=dictsize)
secondword = data_layer(name="secondw", size=dictsize)
thirdword = data_layer(name="thirdw", size=dictsize)
fourthword = data_layer(name="fourthw", size=dictsize)
nextword = data_layer(name="fifthw", size=dictsize)
# construct word embedding for each datalayer
def wordemb(inlayer):
wordemb = table_projection(
input=inlayer,
size=embsize,
param_attr=ParamAttr(
name="_proj",
initial_std=0.001,
learning_rate=1,
l2_rate=0, ))
return wordemb
Efirst = wordemb(firstword)
Esecond = wordemb(secondword)
Ethird = wordemb(thirdword)
Efourth = wordemb(fourthword)
# concatentate Ngram embeddings into context embedding
contextemb = concat_layer(input=[Efirst, Esecond, Ethird, Efourth])
hidden1 = fc_layer(
input=contextemb,
size=hiddensize,
act=SigmoidActivation(),
layer_attr=ExtraAttr(drop_rate=0.5),
bias_attr=ParamAttr(learning_rate=2),
param_attr=ParamAttr(
initial_std=1. / math.sqrt(embsize * 8), learning_rate=1))
# use context embedding to predict nextword
predictword = fc_layer(
input=hidden1,
size=dictsize,
bias_attr=ParamAttr(learning_rate=2),
act=SoftmaxActivation())
cost = classification_cost(input=predictword, label=nextword)
# network input and output
outputs(cost)
#!/bin/bash
set -e
paddle train \
--config ngram.py \
--use_gpu=1 \
--dot_period=100 \
--log_period=3000 \
--test_period=0 \
--save_dir=model \
--num_passes=30
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册