diff --git a/01.fit_a_line/README.en.md b/01.fit_a_line/README.en.md index ac43473538c124acbcdfc586c35b8a488e50d413..b7d60ec64a45c9e8e4781416aef4fb55512c3318 100644 --- a/01.fit_a_line/README.en.md +++ b/01.fit_a_line/README.en.md @@ -163,20 +163,19 @@ feeding={'x': 0, 'y': 1} Moreover, an event handler is provided to print the training progress: ```python -lists = [] - +# event_handler to print training and testing info def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: - print "Pass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics) + print "Pass %d, Batch %d, Cost %f" % ( + event.pass_id, event.batch_id, event.cost) + if isinstance(event, paddle.event.EndPass): - result = trainer.test(reader=paddle.batch( - paddle.dataset.mnist.test(), batch_size=128)) - print "Test with Pass %d, Cost %f, %s\n" % ( - event.pass_id, result.cost, result.metrics) - lists.append((event.pass_id, result.cost, - result.metrics['classification_error_evaluator'])) + result = trainer.test( + reader=paddle.batch( + uci_housing.test(), batch_size=2), + feeding=feeding) + print "Test %d, Cost %f" % (event.pass_id, result.cost) ``` ```python diff --git a/01.fit_a_line/README.md b/01.fit_a_line/README.md index 1b41aa4c67a71b71c408b9ec518229dd4d1c5484..5e7f6ee1d4f363857b66a0663f0570ca2df180c2 100644 --- a/01.fit_a_line/README.md +++ b/01.fit_a_line/README.md @@ -158,20 +158,19 @@ feeding={'x': 0, 'y': 1} 此外,我们还可以提供一个 event handler,来打印训练的进度: ```python -lists = [] - +# event_handler to print training and testing info def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: - print "Pass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics) + print "Pass %d, Batch %d, Cost %f" % ( + event.pass_id, event.batch_id, event.cost) + if isinstance(event, paddle.event.EndPass): - result = trainer.test(reader=paddle.batch( - paddle.dataset.mnist.test(), batch_size=128)) - print "Test with Pass %d, Cost %f, %s\n" % ( - event.pass_id, result.cost, result.metrics) - lists.append((event.pass_id, result.cost, - result.metrics['classification_error_evaluator'])) + result = trainer.test( + reader=paddle.batch( + uci_housing.test(), batch_size=2), + feeding=feeding) + print "Test %d, Cost %f" % (event.pass_id, result.cost) ``` ```python diff --git a/01.fit_a_line/index.en.html b/01.fit_a_line/index.en.html index e5d0d47435cadaa0f51ab2ceebb848b7ca1086e0..954f90ceb0c02fe749016fef97a8305a91bbb54b 100644 --- a/01.fit_a_line/index.en.html +++ b/01.fit_a_line/index.en.html @@ -205,20 +205,19 @@ feeding={'x': 0, 'y': 1} Moreover, an event handler is provided to print the training progress: ```python -lists = [] - +# event_handler to print training and testing info def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: - print "Pass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics) + print "Pass %d, Batch %d, Cost %f" % ( + event.pass_id, event.batch_id, event.cost) + if isinstance(event, paddle.event.EndPass): - result = trainer.test(reader=paddle.batch( - paddle.dataset.mnist.test(), batch_size=128)) - print "Test with Pass %d, Cost %f, %s\n" % ( - event.pass_id, result.cost, result.metrics) - lists.append((event.pass_id, result.cost, - result.metrics['classification_error_evaluator'])) + result = trainer.test( + reader=paddle.batch( + uci_housing.test(), batch_size=2), + feeding=feeding) + print "Test %d, Cost %f" % (event.pass_id, result.cost) ``` ```python diff --git a/01.fit_a_line/index.html b/01.fit_a_line/index.html index 56cde19b6bdb439c1084a36e01405e3cfb6ea692..0046775767192ec67bda87b9e54103d2a24a60b8 100644 --- a/01.fit_a_line/index.html +++ b/01.fit_a_line/index.html @@ -200,20 +200,19 @@ feeding={'x': 0, 'y': 1} 此外,我们还可以提供一个 event handler,来打印训练的进度: ```python -lists = [] - +# event_handler to print training and testing info def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: - print "Pass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics) + print "Pass %d, Batch %d, Cost %f" % ( + event.pass_id, event.batch_id, event.cost) + if isinstance(event, paddle.event.EndPass): - result = trainer.test(reader=paddle.batch( - paddle.dataset.mnist.test(), batch_size=128)) - print "Test with Pass %d, Cost %f, %s\n" % ( - event.pass_id, result.cost, result.metrics) - lists.append((event.pass_id, result.cost, - result.metrics['classification_error_evaluator'])) + result = trainer.test( + reader=paddle.batch( + uci_housing.test(), batch_size=2), + feeding=feeding) + print "Test %d, Cost %f" % (event.pass_id, result.cost) ``` ```python