提交 716383db 编写于 作者: W Wang,Jeff

fix several typos

上级 77a8f48a
...@@ -476,7 +476,7 @@ def load_image(file): ...@@ -476,7 +476,7 @@ def load_image(file):
im = im.resize((32, 32), Image.ANTIALIAS) im = im.resize((32, 32), Image.ANTIALIAS)
im = np.array(im).astype(np.float32) im = np.array(im).astype(np.float32)
# The storage order of the loaded image is W(widht), # The storage order of the loaded image is W(width),
# H(height), C(channel). PaddlePaddle requires # H(height), C(channel). PaddlePaddle requires
# the CHW order, so transpose them. # the CHW order, so transpose them.
im = im.transpose((2, 0, 1)) # CHW im = im.transpose((2, 0, 1)) # CHW
......
...@@ -314,7 +314,7 @@ During the training, it will calculate the `avg_loss` from the prediction. ...@@ -314,7 +314,7 @@ During the training, it will calculate the `avg_loss` from the prediction.
In the context of supervised learning, labels of training images are defined in `fluid.layers.data` as well. During training, the cross-entropy loss function is used and the loss is the output of the network. During testing, the outputs are the probabilities calculated in the classifier. In the context of supervised learning, labels of training images are defined in `fluid.layers.data` as well. During training, the cross-entropy loss function is used and the loss is the output of the network. During testing, the outputs are the probabilities calculated in the classifier.
**NOTE:** A train program should return an array and the first return argument has to be `avg_cost`. **NOTE:** A train program should return an array and the first returned argument has to be `avg_cost`.
The trainer always implicitly use it to calculate the gradient. The trainer always implicitly use it to calculate the gradient.
```python ```python
...@@ -477,7 +477,7 @@ After training is completed, users can use the trained model to classify images. ...@@ -477,7 +477,7 @@ After training is completed, users can use the trained model to classify images.
### Generate input data for inferring ### Generate input data for inferring
`dog.png` is an example image of a dog. Turn it into an numpy array to match the data feeder format. `dog.png` is an example image of a dog. Turn it into a numpy array to match the data feeder format.
```python ```python
# Prepare testing data. # Prepare testing data.
...@@ -490,7 +490,7 @@ def load_image(file): ...@@ -490,7 +490,7 @@ def load_image(file):
im = im.resize((32, 32), Image.ANTIALIAS) im = im.resize((32, 32), Image.ANTIALIAS)
im = np.array(im).astype(np.float32) im = np.array(im).astype(np.float32)
# The storage order of the loaded image is W(widht), # The storage order of the loaded image is W(width),
# H(height), C(channel). PaddlePaddle requires # H(height), C(channel). PaddlePaddle requires
# the CHW order, so transpose them. # the CHW order, so transpose them.
im = im.transpose((2, 0, 1)) # CHW im = im.transpose((2, 0, 1)) # CHW
......
...@@ -518,7 +518,7 @@ def load_image(file): ...@@ -518,7 +518,7 @@ def load_image(file):
im = im.resize((32, 32), Image.ANTIALIAS) im = im.resize((32, 32), Image.ANTIALIAS)
im = np.array(im).astype(np.float32) im = np.array(im).astype(np.float32)
# The storage order of the loaded image is W(widht), # The storage order of the loaded image is W(width),
# H(height), C(channel). PaddlePaddle requires # H(height), C(channel). PaddlePaddle requires
# the CHW order, so transpose them. # the CHW order, so transpose them.
im = im.transpose((2, 0, 1)) # CHW im = im.transpose((2, 0, 1)) # CHW
......
...@@ -356,7 +356,7 @@ During the training, it will calculate the `avg_loss` from the prediction. ...@@ -356,7 +356,7 @@ During the training, it will calculate the `avg_loss` from the prediction.
In the context of supervised learning, labels of training images are defined in `fluid.layers.data` as well. During training, the cross-entropy loss function is used and the loss is the output of the network. During testing, the outputs are the probabilities calculated in the classifier. In the context of supervised learning, labels of training images are defined in `fluid.layers.data` as well. During training, the cross-entropy loss function is used and the loss is the output of the network. During testing, the outputs are the probabilities calculated in the classifier.
**NOTE:** A train program should return an array and the first return argument has to be `avg_cost`. **NOTE:** A train program should return an array and the first returned argument has to be `avg_cost`.
The trainer always implicitly use it to calculate the gradient. The trainer always implicitly use it to calculate the gradient.
```python ```python
...@@ -519,7 +519,7 @@ After training is completed, users can use the trained model to classify images. ...@@ -519,7 +519,7 @@ After training is completed, users can use the trained model to classify images.
### Generate input data for inferring ### Generate input data for inferring
`dog.png` is an example image of a dog. Turn it into an numpy array to match the data feeder format. `dog.png` is an example image of a dog. Turn it into a numpy array to match the data feeder format.
```python ```python
# Prepare testing data. # Prepare testing data.
...@@ -532,7 +532,7 @@ def load_image(file): ...@@ -532,7 +532,7 @@ def load_image(file):
im = im.resize((32, 32), Image.ANTIALIAS) im = im.resize((32, 32), Image.ANTIALIAS)
im = np.array(im).astype(np.float32) im = np.array(im).astype(np.float32)
# The storage order of the loaded image is W(widht), # The storage order of the loaded image is W(width),
# H(height), C(channel). PaddlePaddle requires # H(height), C(channel). PaddlePaddle requires
# the CHW order, so transpose them. # the CHW order, so transpose them.
im = im.transpose((2, 0, 1)) # CHW im = im.transpose((2, 0, 1)) # CHW
......
...@@ -102,7 +102,7 @@ def infer(use_cuda, inference_program, params_dirname=None): ...@@ -102,7 +102,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
im = im.resize((32, 32), Image.ANTIALIAS) im = im.resize((32, 32), Image.ANTIALIAS)
im = np.array(im).astype(np.float32) im = np.array(im).astype(np.float32)
# The storage order of the loaded image is W(widht), # The storage order of the loaded image is W(width),
# H(height), C(channel). PaddlePaddle requires # H(height), C(channel). PaddlePaddle requires
# the CHW order, so transpose them. # the CHW order, so transpose them.
im = im.transpose((2, 0, 1)) # CHW im = im.transpose((2, 0, 1)) # CHW
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册