diff --git a/03.image_classification/README.cn.md b/03.image_classification/README.cn.md index 319f77fc92c5087a8378ff245578f80660c0c91a..8531b147342b46bc86bc33e33a217cf961d8ddad 100644 --- a/03.image_classification/README.cn.md +++ b/03.image_classification/README.cn.md @@ -396,8 +396,8 @@ def train_test(program, reader): accumulated = len([avg_cost, acc]) * [0] for tid, test_data in enumerate(reader()): avg_cost_np = test_exe.run(program=program, - feed=feeder_test.feed(test_data), - fetch_list=[avg_cost, acc]) + feed=feeder_test.feed(test_data), + fetch_list=[avg_cost, acc]) accumulated = [x[0] + x[1][0] for x in zip(accumulated, avg_cost_np)] count += 1 return [x / count for x in accumulated] @@ -412,11 +412,11 @@ def train_test(program, reader): ```python params_dirname = "image_classification_resnet.inference.model" -from paddle.v2.plot import Ploter +from paddle.utils.plot import Ploter -train_title = "Train cost" -test_title = "Test cost" -plot_cost = Ploter(test_title,train_title) +train_prompt = "Train cost" +test_prompt = "Test cost" +plot_cost = Ploter(test_prompt,train_prompt) # main train loop. def train_loop(): @@ -434,13 +434,13 @@ def train_loop(): feed=feeder.feed(data_train), fetch_list=[avg_cost, acc]) if step % 1 == 0: - plot_cost.append(train_title, step, avg_loss_value[0]) + plot_cost.append(train_prompt, step, avg_loss_value[0]) plot_cost.plot() step += 1 avg_cost_test, accuracy_test = train_test(test_program, reader=test_reader) - plot_cost.append(test_title, step, avg_cost_test) + plot_cost.append(test_prompt, step, avg_cost_test) # save parameters if params_dirname is not None: @@ -485,23 +485,18 @@ Test with Pass 0, Loss 1.1, Acc 0.6 ### 生成预测输入数据 -`dog.png` is an example image of a dog. Turn it into an numpy array to match the data feeder format. - -### 生成预测输入数据 - -`dog.png` is an example image of a dog. Turn it into an numpy array to match the data feeder format. +`dog.png` 是一张小狗的图片. 我们将它转换成 `numpy` 数组以满足`feeder`的格式. ```python # Prepare testing data. from PIL import Image -import numpy as np import os def load_image(file): im = Image.open(file) im = im.resize((32, 32), Image.ANTIALIAS) - im = np.array(im).astype(np.float32) + im = numpy.array(im).astype(numpy.float32) # The storage order of the loaded image is W(width), # H(height), C(channel). PaddlePaddle requires # the CHW order, so transpose them. diff --git a/03.image_classification/index.cn.html b/03.image_classification/index.cn.html index 8acdbe035858b12fa6684d61de1be42f69a32280..9449633a0de6d164dbe8a7941f60d61bbcfa9d4b 100644 --- a/03.image_classification/index.cn.html +++ b/03.image_classification/index.cn.html @@ -438,8 +438,8 @@ def train_test(program, reader): accumulated = len([avg_cost, acc]) * [0] for tid, test_data in enumerate(reader()): avg_cost_np = test_exe.run(program=program, - feed=feeder_test.feed(test_data), - fetch_list=[avg_cost, acc]) + feed=feeder_test.feed(test_data), + fetch_list=[avg_cost, acc]) accumulated = [x[0] + x[1][0] for x in zip(accumulated, avg_cost_np)] count += 1 return [x / count for x in accumulated] @@ -454,11 +454,11 @@ def train_test(program, reader): ```python params_dirname = "image_classification_resnet.inference.model" -from paddle.v2.plot import Ploter +from paddle.utils.plot import Ploter -train_title = "Train cost" -test_title = "Test cost" -plot_cost = Ploter(test_title,train_title) +train_prompt = "Train cost" +test_prompt = "Test cost" +plot_cost = Ploter(test_prompt,train_prompt) # main train loop. def train_loop(): @@ -476,13 +476,13 @@ def train_loop(): feed=feeder.feed(data_train), fetch_list=[avg_cost, acc]) if step % 1 == 0: - plot_cost.append(train_title, step, avg_loss_value[0]) + plot_cost.append(train_prompt, step, avg_loss_value[0]) plot_cost.plot() step += 1 avg_cost_test, accuracy_test = train_test(test_program, reader=test_reader) - plot_cost.append(test_title, step, avg_cost_test) + plot_cost.append(test_prompt, step, avg_cost_test) # save parameters if params_dirname is not None: @@ -527,23 +527,18 @@ Test with Pass 0, Loss 1.1, Acc 0.6 ### 生成预测输入数据 -`dog.png` is an example image of a dog. Turn it into an numpy array to match the data feeder format. - -### 生成预测输入数据 - -`dog.png` is an example image of a dog. Turn it into an numpy array to match the data feeder format. +`dog.png` 是一张小狗的图片. 我们将它转换成 `numpy` 数组以满足`feeder`的格式. ```python # Prepare testing data. from PIL import Image -import numpy as np import os def load_image(file): im = Image.open(file) im = im.resize((32, 32), Image.ANTIALIAS) - im = np.array(im).astype(np.float32) + im = numpy.array(im).astype(numpy.float32) # The storage order of the loaded image is W(width), # H(height), C(channel). PaddlePaddle requires # the CHW order, so transpose them.