提交 6bed4dab 编写于 作者: S silingtong123 提交者: Tao Luo

remove the usage of InferenceTranspiler (#797)

上级 361b25db
...@@ -538,11 +538,7 @@ with fluid.scope_guard(inference_scope): ...@@ -538,11 +538,7 @@ with fluid.scope_guard(inference_scope):
[inference_program, feed_target_names, [inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(params_dirname, exe) fetch_targets] = fluid.io.load_inference_model(params_dirname, exe)
# The input's dimension of conv should be 4-D or 5-D.
# Use inference_transpiler to speedup
inference_transpiler_program = inference_program.clone()
t = fluid.transpiler.InferenceTranspiler()
t.transpile(inference_transpiler_program, place)
# Construct feed as a dictionary of {feed_target_name: feed_target_data} # Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets. # and results will contain a list of data corresponding to fetch_targets.
...@@ -550,14 +546,6 @@ with fluid.scope_guard(inference_scope): ...@@ -550,14 +546,6 @@ with fluid.scope_guard(inference_scope):
feed={feed_target_names[0]: img}, feed={feed_target_names[0]: img},
fetch_list=fetch_targets) fetch_list=fetch_targets)
transpiler_results = exe.run(inference_transpiler_program,
feed={feed_target_names[0]: img},
fetch_list=fetch_targets)
assert len(results[0]) == len(transpiler_results[0])
for i in range(len(results[0])):
numpy.testing.assert_almost_equal(
results[0][i], transpiler_results[0][i], decimal=5)
# infer label # infer label
label_list = [ label_list = [
......
...@@ -541,11 +541,7 @@ with fluid.scope_guard(inference_scope): ...@@ -541,11 +541,7 @@ with fluid.scope_guard(inference_scope):
[inference_program, feed_target_names, [inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(params_dirname, exe) fetch_targets] = fluid.io.load_inference_model(params_dirname, exe)
# The input's dimension of conv should be 4-D or 5-D.
# Use inference_transpiler to speedup
inference_transpiler_program = inference_program.clone()
t = fluid.transpiler.InferenceTranspiler()
t.transpile(inference_transpiler_program, place)
# Construct feed as a dictionary of {feed_target_name: feed_target_data} # Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets. # and results will contain a list of data corresponding to fetch_targets.
...@@ -553,14 +549,7 @@ with fluid.scope_guard(inference_scope): ...@@ -553,14 +549,7 @@ with fluid.scope_guard(inference_scope):
feed={feed_target_names[0]: img}, feed={feed_target_names[0]: img},
fetch_list=fetch_targets) fetch_list=fetch_targets)
transpiler_results = exe.run(inference_transpiler_program,
feed={feed_target_names[0]: img},
fetch_list=fetch_targets)
assert len(results[0]) == len(transpiler_results[0])
for i in range(len(results[0])):
numpy.testing.assert_almost_equal(
results[0][i], transpiler_results[0][i], decimal=5)
# infer label # infer label
label_list = [ label_list = [
......
...@@ -580,11 +580,7 @@ with fluid.scope_guard(inference_scope): ...@@ -580,11 +580,7 @@ with fluid.scope_guard(inference_scope):
[inference_program, feed_target_names, [inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(params_dirname, exe) fetch_targets] = fluid.io.load_inference_model(params_dirname, exe)
# The input's dimension of conv should be 4-D or 5-D.
# Use inference_transpiler to speedup
inference_transpiler_program = inference_program.clone()
t = fluid.transpiler.InferenceTranspiler()
t.transpile(inference_transpiler_program, place)
# Construct feed as a dictionary of {feed_target_name: feed_target_data} # Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets. # and results will contain a list of data corresponding to fetch_targets.
...@@ -592,14 +588,6 @@ with fluid.scope_guard(inference_scope): ...@@ -592,14 +588,6 @@ with fluid.scope_guard(inference_scope):
feed={feed_target_names[0]: img}, feed={feed_target_names[0]: img},
fetch_list=fetch_targets) fetch_list=fetch_targets)
transpiler_results = exe.run(inference_transpiler_program,
feed={feed_target_names[0]: img},
fetch_list=fetch_targets)
assert len(results[0]) == len(transpiler_results[0])
for i in range(len(results[0])):
numpy.testing.assert_almost_equal(
results[0][i], transpiler_results[0][i], decimal=5)
# infer label # infer label
label_list = [ label_list = [
......
...@@ -583,11 +583,7 @@ with fluid.scope_guard(inference_scope): ...@@ -583,11 +583,7 @@ with fluid.scope_guard(inference_scope):
[inference_program, feed_target_names, [inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(params_dirname, exe) fetch_targets] = fluid.io.load_inference_model(params_dirname, exe)
# The input's dimension of conv should be 4-D or 5-D.
# Use inference_transpiler to speedup
inference_transpiler_program = inference_program.clone()
t = fluid.transpiler.InferenceTranspiler()
t.transpile(inference_transpiler_program, place)
# Construct feed as a dictionary of {feed_target_name: feed_target_data} # Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets. # and results will contain a list of data corresponding to fetch_targets.
...@@ -595,14 +591,7 @@ with fluid.scope_guard(inference_scope): ...@@ -595,14 +591,7 @@ with fluid.scope_guard(inference_scope):
feed={feed_target_names[0]: img}, feed={feed_target_names[0]: img},
fetch_list=fetch_targets) fetch_list=fetch_targets)
transpiler_results = exe.run(inference_transpiler_program,
feed={feed_target_names[0]: img},
fetch_list=fetch_targets)
assert len(results[0]) == len(transpiler_results[0])
for i in range(len(results[0])):
numpy.testing.assert_almost_equal(
results[0][i], transpiler_results[0][i], decimal=5)
# infer label # infer label
label_list = [ label_list = [
......
...@@ -191,12 +191,6 @@ def infer(use_cuda, params_dirname=None): ...@@ -191,12 +191,6 @@ def infer(use_cuda, params_dirname=None):
[inference_program, feed_target_names, [inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(params_dirname, exe) fetch_targets] = fluid.io.load_inference_model(params_dirname, exe)
# The input's dimension of conv should be 4-D or 5-D.
# Use inference_transpiler to speedup
inference_transpiler_program = inference_program.clone()
t = fluid.transpiler.InferenceTranspiler()
t.transpile(inference_transpiler_program, place)
# Construct feed as a dictionary of {feed_target_name: feed_target_data} # Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets. # and results will contain a list of data corresponding to fetch_targets.
results = exe.run( results = exe.run(
...@@ -204,16 +198,6 @@ def infer(use_cuda, params_dirname=None): ...@@ -204,16 +198,6 @@ def infer(use_cuda, params_dirname=None):
feed={feed_target_names[0]: img}, feed={feed_target_names[0]: img},
fetch_list=fetch_targets) fetch_list=fetch_targets)
transpiler_results = exe.run(
inference_transpiler_program,
feed={feed_target_names[0]: img},
fetch_list=fetch_targets)
assert len(results[0]) == len(transpiler_results[0])
for i in range(len(results[0])):
numpy.testing.assert_almost_equal(
results[0][i], transpiler_results[0][i], decimal=5)
# infer label # infer label
label_list = [ label_list = [
"airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "airplane", "automobile", "bird", "cat", "deer", "dog", "frog",
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册