“b1bdcd4de8b7b0fea2868d664563e425426f6834”上不存在“paddle/fluid/framework/ir/mkldnn/fc_mkldnn_pass.h”
提交 5d129184 编写于 作者: J julie

polish English

上级 ba9a1d1f
......@@ -46,7 +46,7 @@ Let us begin the tutorial with a classical problem called Linear Regression \[[1
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
## Problem Setup
Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity.
Suppose we have a dataset of $n$ real estate properties. Each real estate property will be referred to as **homes** in this chapter for clarity.
Each home is associated with $d$ attributes. The attributes describe characteristics such the number of rooms in the home, the number of schools or hospitals in the neighborhood, and the traffic condition nearby.
......@@ -57,7 +57,7 @@ $$y_i = \omega_1x_{i,1} + \omega_2x_{i,2} + \ldots + \omega_dx_{i,d} + b, i=1,\
where $\vec{\omega}$ and $b$ are the model parameters we want to estimate. Once they are learned, we will be able to predict the price of a home, given the attributes associated with it. We call this model **Linear Regression**. In other words, we want to regress a value against several values linearly. In practice, a linear model is often too simplistic to capture the real relationships between the variables. Yet, because Linear Regression is easy to train and analyze, it has been applied to a large number of real problems. As a result, it is an important topic in many classic Statistical Learning and Machine Learning textbooks \[[2,3,4](#References)\].
## Results Demonstration
We first show the result of our model. The dataset [UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing) is used to train a linear model to predict the home prices in Boston. The figure below shows the predictions the model makes for some home prices. The $X$-axis represents the median value of the prices of simlilar homes within a bin, while the $Y$-axis represents the home value our linear model predicts. The dotted line represents points where $X=Y$. When reading the diagram, the more precise the model predicts, the closer the point is to the dotted line.
We first show the result of our model. The dataset [UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing) is used to train a linear model to predict the home prices in Boston. The figure below shows the predictions the model makes for some home prices. The $X$-axis represents the median value of the prices of similar homes within a bin, while the $Y$-axis represents the home value our linear model predicts. The dotted line represents points where $X=Y$. When reading the diagram, the more precise the model predicts, the closer the point is to the dotted line.
<p align="center">
<img src = "image/predictions_en.png" width=400><br/>
Figure 1. Predicted Value V.S. Actual Value
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册