From 5b58725e01c58328fca21a40a98d28cfb3363fac Mon Sep 17 00:00:00 2001 From: Chunyu Zhang Date: Mon, 7 Sep 2020 14:14:44 +0800 Subject: [PATCH] add high level api doc (#887) * upgrade code to 2.0-beta * add high level api doc --- .../high_level_api/high_level_api.ipynb | 623 ++++++++++++++++++ .../pets_image_segmentation_U_Net_like.ipynb | 325 +++------ 2 files changed, 704 insertions(+), 244 deletions(-) create mode 100644 paddle2.0_docs/high_level_api/high_level_api.ipynb diff --git a/paddle2.0_docs/high_level_api/high_level_api.ipynb b/paddle2.0_docs/high_level_api/high_level_api.ipynb new file mode 100644 index 0000000..6474cbc --- /dev/null +++ b/paddle2.0_docs/high_level_api/high_level_api.ipynb @@ -0,0 +1,623 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37464bitc4da1ac836094043840bff631bedbf7f", + "display_name": "Python 3.7.4 64-bit" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 飞桨高层API使用指南\n", + "\n", + "## 1. 简介\n", + "\n", + "飞桨2.0全新推出高层API,是对飞桨API的进一步封装与升级,提供了更加简洁易用的API,进一步提升了飞桨的易学易用性,并增强飞桨的功能。\n", + "\n", + "飞桨高层API面向从深度学习小白到资深开发者的所有人群,对于AI初学者来说,使用高层API可以简单快速的构建深度学习项目,对于资深开发者来说,可以快速完成算法迭代。\n", + "\n", + "飞桨高层API具有以下特点:\n", + "\n", + "* 易学易用: 高层API是对普通动态图API的进一步封装和优化,同时保持与普通API的兼容性,高层API使用更加易学易用,同样的实现使用高层API可以节省大量的代码。\n", + "* 低代码开发: 使用飞桨高层API的一个明显特点是,用户可编程代码量大大缩减。\n", + "* 动静转换: 高层API支持动静转换,用户只需要改一行代码即可实现将动态图代码在静态图模式下训练,既方便用户使用动态图调试模型,又提升了模型训练效率。\n", + "\n", + "在功能增强与使用方式上,高层API有以下升级:\n", + "\n", + "* 模型训练方式升级: 高层API中封装了Model类,继承了Model类的神经网络可以仅用几行代码完成模型的训练。\n", + "* 新增图像处理模块transform: 飞桨新增了图像预处理模块,其中包含数十种数据处理函数,基本涵盖了常用的数据处理、数据增强方法。\n", + "* 提供常用的神经网络模型可供调用: 高层API中集成了计算机视觉领域和自然语言处理领域常用模型,包括但不限于mobilenet、resnet、yolov3、cyclegan、bert、transformer、seq2seq等等。同时发布了对应模型的预训练模型,用户可以直接使用这些模型或者在此基础上完成二次开发。\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. 安装并使用飞桨高层API\n", + "\n", + "飞桨高层API无需独立安装,只需要安装好paddlepaddle即可,安装完成后import paddle即可使用相关高层API,如:paddle.Model、视觉领域paddle.vision、NLP领域paddle.text。" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": "'0.0.0'" + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "import paddle\n", + "import paddle.vision as vision\n", + "import paddle.text as text\n", + "\n", + "paddle.__version__" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. 目录\n", + "\n", + "本指南教学内容覆盖\n", + "\n", + "* 使用高层API提供的自带数据集进行相关深度学习任务训练。\n", + "* 使用自定义数据进行数据集的定义、数据预处理和训练。\n", + "* 如何在数据集定义和加载中应用数据增强相关接口。\n", + "* 如何进行模型的组网。\n", + "* 高层API进行模型训练的相关API使用。\n", + "* 如何在fit接口满足需求的时候进行自定义,使用基础API来完成训练。\n", + "* 如何使用多卡来加速训练。\n", + "\n", + "其他端到端的示例教程:\n", + "* TBD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. 数据集定义、加载和数据预处理\n", + "\n", + "对于深度学习任务,均是框架针对各种类型数字的计算,是无法直接使用原始图片和文本等文件来完成。那么就是涉及到了一项动作,就是将原始的各种数据文件进行处理加工,转换成深度学习任务可以使用的数据。\n", + "\n", + "### 3.1 框架自带数据集使用\n", + "\n", + "高层API将一些我们常用到的数据集作为领域API对用户进行开放,对应API所在目录为`paddle.vision.datasets`,那么我们先看下提供了哪些数据集。" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": "['DatasetFolder',\n 'ImageFolder',\n 'MNIST',\n 'Flowers',\n 'Cifar10',\n 'Cifar100',\n 'VOC2012']" + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "paddle.vision.datasets.__all__" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这里我们是加载一个手写数字识别的数据集,用`mode`来标识是训练数据还是测试数据集。数据集接口会自动从远端下载数据集到本机缓存目录`~/.cache/paddle/dataset`。" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# 测试数据集\n", + "train_dataset = vision.datasets.MNIST(mode='train')\n", + "\n", + "# 验证数据集\n", + "val_dataset = vision.datasets.MNIST(mode='test')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2 自定义数据集\n", + "\n", + "更多的时候我们是需要自己使用已有的相关数据来定义数据集,那么这里我们通过一个案例来了解如何进行数据集的定义,飞桨为用户提供了`paddle.io.Dataset`基类,让用户通过类的集成来快速实现数据集定义。" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "=============train dataset=============\ntraindata1 label1\ntraindata2 label2\ntraindata3 label3\ntraindata4 label4\n=============evaluation dataset=============\ntestdata1 label1\ntestdata2 label2\ntestdata3 label3\ntestdata4 label4\n" + } + ], + "source": [ + "from paddle.io import Dataset\n", + "\n", + "\n", + "class MyDataset(Dataset):\n", + " \"\"\"\n", + " 步骤一:继承paddle.io.Dataset类\n", + " \"\"\"\n", + " def __init__(self, mode='train'):\n", + " \"\"\"\n", + " 步骤二:实现构造函数,定义数据读取方式,划分训练和测试数据集\n", + " \"\"\"\n", + " super(MyDataset, self).__init__()\n", + "\n", + " if mode == 'train':\n", + " self.data = [\n", + " ['traindata1', 'label1'],\n", + " ['traindata2', 'label2'],\n", + " ['traindata3', 'label3'],\n", + " ['traindata4', 'label4'],\n", + " ]\n", + " else:\n", + " self.data = [\n", + " ['testdata1', 'label1'],\n", + " ['testdata2', 'label2'],\n", + " ['testdata3', 'label3'],\n", + " ['testdata4', 'label4'],\n", + " ]\n", + " \n", + " def __getitem__(self, index):\n", + " \"\"\"\n", + " 步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)\n", + " \"\"\"\n", + " data = self.data[index][0]\n", + " label = self.data[index][1]\n", + "\n", + " return data, label\n", + "\n", + " def __len__(self):\n", + " \"\"\"\n", + " 步骤四:实现__len__方法,返回数据集总数目\n", + " \"\"\"\n", + " return len(self.data)\n", + "\n", + "# 测试定义的数据集\n", + "train_dataset = MyDataset(mode='train')\n", + "val_dataset = MyDataset(mode='test')\n", + "\n", + "print('=============train dataset=============')\n", + "for data, label in train_dataset:\n", + " print(data, label)\n", + "\n", + "print('=============evaluation dataset=============')\n", + "for data, label in val_dataset:\n", + " print(data, label)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.3 数据增强\n", + "\n", + "训练过程中有时会遇到过拟合的问题,其中一个解决方法就是对训练数据做增强,对数据进行处理得到不同的图像,从而泛化数据集。数据增强API是定义在领域目录的transofrms下,这里我们介绍两种使用方式,一种是基于框架自带数据集,一种是基于自己定义的数据集。\n", + "\n", + "#### 3.3.1 框架自带数据集" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from paddle.vision.transforms import Compose, Resize, ColorJitter\n", + "\n", + "\n", + "# 定义想要使用那些数据增强方式,这里用到了随机调整亮度、对比度和饱和度,改变图片大小\n", + "transform = Compose([ColorJitter(), Resize(size=100)])\n", + "\n", + "# 通过transform参数传递定义好的数据增项方法即可完成对自带数据集的应用\n", + "train_dataset = vision.datasets.MNIST(mode='train', transform=transform)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 3.3.2 自定义数据集\n", + "\n", + "针对自定义数据集使用数据增强有两种方式,一种是在数据集的构造函数中进行数据增强方法的定义,之后对__getitem__中返回的数据进行应用。另外一种方式也可以给自定义的数据集类暴漏一个构造参数,在实例化类的时候将数据增强方法传递进去。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from paddle.io import Dataset\n", + "\n", + "\n", + "class MyDataset(Dataset):\n", + " def __init__(self, mode='train'):\n", + " super(MyDataset, self).__init__()\n", + "\n", + " if mode == 'train':\n", + " self.data = [\n", + " ['traindata1', 'label1'],\n", + " ['traindata2', 'label2'],\n", + " ['traindata3', 'label3'],\n", + " ['traindata4', 'label4'],\n", + " ]\n", + " else:\n", + " self.data = [\n", + " ['testdata1', 'label1'],\n", + " ['testdata2', 'label2'],\n", + " ['testdata3', 'label3'],\n", + " ['testdata4', 'label4'],\n", + " ]\n", + "\n", + " # 定义要使用的数据预处理方法,针对图片的操作\n", + " self.transform = Compose([ColorJitter(), Resize(size=100)])\n", + " \n", + " def __getitem__(self, index):\n", + " data = self.data[index][0]\n", + "\n", + " # 在这里对训练数据进行应用\n", + " # 这里只是一个示例,测试时需要将数据集更换为图片数据进行测试\n", + " data = self.transform(data)\n", + "\n", + " label = self.data[index][1]\n", + "\n", + " return data, label\n", + "\n", + " def __len__(self):\n", + " return len(self.data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. 模型组网\n", + "\n", + "针对高层API在模型组网上和基础API是统一的一套,无需投入额外的学习使用成本。那么这里我举几个简单的例子来做示例。\n", + "\n", + "### 4.1 Sequential组网\n", + "\n", + "针对顺序的线性网络结构我们可以直接使用Sequential来快速完成组网,可以减少类的定义等代码编写。" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# Sequential形式组网\n", + "mnist = paddle.nn.Sequential(\n", + " paddle.nn.Flatten(),\n", + " paddle.nn.Linear(784, 512),\n", + " paddle.nn.ReLU(),\n", + " paddle.nn.Dropout(0.2),\n", + " paddle.nn.Linear(512, 10)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.2 SubClass组网\n", + "针对一些比较复杂的网络结构,就可以使用Layer子类定义的方式来进行模型代码编写,在`__init__`构造函数中进行组网Layer的声明,在`forward`中使用声明的Layer变量进行前向计算。子类组网方式也可以实现sublayer的复用,针对相同的layer可以在构造函数中一次性定义,在forward中多次调用。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Layer类继承方式组网\n", + "class Mnist(paddle.nn.Layer):\n", + " def __init__(self):\n", + " super(Mnist, self).__init__()\n", + "\n", + " self.flatten = paddle.nn.Flatten()\n", + " self.linear_1 = paddle.nn.Linear(784, 512)\n", + " self.linear_2 = paddle.nn.Linear(512, 10)\n", + " self.relu = paddle.nn.ReLU()\n", + " self.dropout = paddle.nn.Dropout(0.2)\n", + "\n", + " def forward(self, inputs):\n", + " y = self.flatten(inputs)\n", + " y = self.linear_1(y)\n", + " y = self.relu(y)\n", + " y = self.dropout(y)\n", + " y = self.linear_2(y)\n", + "\n", + " return y\n", + "\n", + "mnist = Mnist()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.3 模型封装\n", + "\n", + "定义好网络结构之后我们来使用`paddle.Model`完成模型的封装,将网络结构组合成一个可快速使用高层API进行训练、评估和预测的类。\n", + "\n", + "在封装的时候我们有两种场景,动态图训练模式和静态图训练模式。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 场景1:动态图模式\n", + "\n", + "# 启动动态图训练模式\n", + "paddle.disable_static()\n", + "# 使用GPU训练\n", + "paddle.set_device('gpu')\n", + "# 模型封装\n", + "model = paddle.Model(mnist)\n", + "\n", + "\n", + "# 场景2:静态图模式\n", + "\n", + "# input = paddle.static.InputSpec([None, 1, 28, 28], dtype='float32')\n", + "# label = paddle.static.InputSpec([None, 1], dtype='int8')\n", + "# model = paddle.Model(mnist, input, label)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.4 模型可视化\n", + "\n", + "在组建好我们的网络结构后,一般我们会想去对我们的网络结构进行一下可视化,逐层的去对齐一下我们的网络结构参数,看看是否符合我们的预期。这里可以通过`Model.summary`接口进行可视化展示。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary((1, 28, 28))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "另外,summary接口有两种使用方式,下面我们通过两个示例来做展示,除了`Model.summary`这种配套`paddle.Model`封装使用的接口外,还有一套配合没有经过`paddle.Model`封装的方式来使用。可以直接将实例化好的Layer子类放到`paddle.summary`接口中进行可视化呈现。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "paddle.summary(mnist, (1, 28, 28))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这里面有一个注意的点,有的用户可能会疑惑为什么要传递`(1, 28, 28)`这个input_size参数,因为在动态图中,网络定义阶段是还没有得到输入数据的形状信息,我们想要做网络结构的呈现就无从下手,那么我们通过告知接口网络结构的输入数据形状,这样网络可以通过逐层的计算推导得到完整的网络结构信息进行呈现。如果是动态图运行模式,那么就不需要给summary接口传递输入数据形状这个值了,因为在Model封装的时候我们已经定义好了InputSpec,其中包含了输入数据的形状格式。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. 模型训练\n", + "\n", + "使用`paddle.Model`封装成模型类后进行训练非常的简洁方便,我们可以直接通过调用`Model.fit`就可以完成训练过程。\n", + "\n", + "在使用`Model.fit`接口启动训练前,我们先通过`Model.prepare`接口来对训练进行提前的配置准备工作,包括设置模型优化器,Loss计算方法,精度计算方法等。\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 为模型训练做准备,设置优化器,损失函数和精度计算方式\n", + "model.prepare(paddle.optimizer.Adam(parameters=model.parameters()), \n", + " paddle.nn.CrossEntropyLoss(),\n", + " paddle.metric.Accuracy())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "做好模型训练的前期准备工作后,我们正式调用`fit()`接口来启动训练过程,需要指定一下至少3个关键参数:训练数据集,训练轮次和单次训练数据批次大小。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 启动模型训练,指定训练数据集,设置训练轮次,设置每次数据集计算的批次大小,设置日志格式\n", + "model.fit(train_dataset, \n", + " epochs=10, \n", + " batch_size=32,\n", + " verbose=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5.1 单机单卡\n", + "\n", + "我们把刚才单步教学的训练代码做一个整合,这个完整的代码示例就是我们的单机单卡训练程序。" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# 启动动态图训练模式\n", + "paddle.disable_static()\n", + "\n", + "# 使用GPU训练\n", + "paddle.set_device('gpu')\n", + "\n", + "# 构建模型训练用的Model,告知需要训练哪个模型\n", + "model = paddle.Model(mnist)\n", + "\n", + "# 为模型训练做准备,设置优化器,损失函数和精度计算方式\n", + "model.prepare(paddle.optimizer.Adam(parameters=model.parameters()), \n", + " paddle.nn.CrossEntropyLoss(),\n", + " paddle.metric.Accuracy())\n", + "\n", + "# 启动模型训练,指定训练数据集,设置训练轮次,设置每次数据集计算的批次大小,设置日志格式\n", + "model.fit(train_dataset, \n", + " epochs=10, \n", + " batch_size=32,\n", + " verbose=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5.2 单机多卡\n", + "\n", + "对于高层API来实现单机多卡非常简单,整个训练代码和单机单卡没有差异。直接使用`paddle.distributed.launch`启动单机单卡的程序即可。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# train.py里面包含的就是单机单卡代码\n", + "python -m paddle.distributed.launch train.py" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 6. 模型评估\n", + "\n", + "对于训练好的模型进行评估操作可以使用`evaluate`接口来实现。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "result = model.evaluate(val_dataset, verbose=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 7. 模型预测\n", + "\n", + "高层API中提供`predict`接口,支持用户使用测试数据来完成模型的预测。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pred_result = model.predict(val_dataset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 8. 模型部署\n", + "\n", + "### 8.1 模型存储\n", + "\n", + "模型训练和验证达到我们的预期后,可以使用`save`接口来将我们的模型保存下来,用于后续模型的Fine-tuning或推理部署。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 保存用于推理部署的模型(training=False)\n", + "model.save('~/model/mnist', training=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 8.2 预测部署\n", + "\n", + "有了用于推理部署的模型,就可以使用推理部署框架来完成预测服务部署,具体可以参见:[预测部署](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/index_cn.html), 包括服务端部署、移动端部署和模型压缩。" + ] + } + ] +} \ No newline at end of file diff --git a/paddle2.0_docs/image_segmentation/pets_image_segmentation_U_Net_like.ipynb b/paddle2.0_docs/image_segmentation/pets_image_segmentation_U_Net_like.ipynb index febf072..b16235e 100644 --- a/paddle2.0_docs/image_segmentation/pets_image_segmentation_U_Net_like.ipynb +++ b/paddle2.0_docs/image_segmentation/pets_image_segmentation_U_Net_like.ipynb @@ -34,18 +34,16 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { + "output_type": "execute_result", "data": { - "text/plain": [ - "'0.0.0'" - ] + "text/plain": "'0.0.0'" }, - "execution_count": 2, "metadata": {}, - "output_type": "execute_result" + "execution_count": 1 } ], "source": [ @@ -94,7 +92,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -105,20 +103,7 @@ "outputId": "3985783f-7166-4afa-f511-16427b3e2a71", "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 755M 100 755M 0 0 2428k 0 0:05:18 0:05:18 --:--:-- 5592k 0 2071k 0 0:06:13 0:00:23 0:05:50 2304k 0 0 2239k 0 0:05:45 0:00:53 0:04:52 3108k0 2607k 0 0:04:56 0:01:05 0:03:51 4402k 0 0:04:33 0:01:15 0:03:18 4383k29 220M 0 0 2746k 0 0:04:41 0:01:22 0:03:19 1733k1:28 0:03:22 1395k476k 0 0:05:12 0:01:37 0:03:35 1507k 2320k 0 0:05:33 0:01:55 0:03:38 1297k2323k 0 0:05:32 0:01:58 0:03:34 2045k17 0:02:10 0:03:07 4157k 0 0:05:24 0:02:35 0:02:49 1542k 2381k 0 0:05:24 0:02:37 0:02:47 2077k 0 0:05:34 0:02:55 0:02:39 2520k5:34 0:02:56 0:02:38 2462k 0 0 2368k 0 0:05:26 0:03:24 0:02:02 2582k2444k 0 0:05:16 0:03:41 0:01:35 2174k:04:09 0:01:23 1638k13k 0 0:05:34 0:04:25 0:01:09 2396k2 3048k5M 0 0 2364k 0 0:05:27 0:04:56 0:00:31 2492k0 0:05:27 0:05:02 0:00:25 2114k\n", - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 18.2M 100 18.2M 0 0 1332k 0 0:00:14 0:00:14 --:--:-- 2580k90k 0 0:00:38 0:00:06 0:00:32 586k 0 0:00:20 0:00:11 0:00:09 1420k 0 1207k 0 0:00:15 0:00:13 0:00:02 2167k\n" - ] - } - ], + "outputs": [], "source": [ "!curl -O http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz\n", "!curl -O http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz\n", @@ -173,7 +158,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -186,11 +171,9 @@ }, "outputs": [ { - "name": "stdout", "output_type": "stream", - "text": [ - "用于训练的图片样本数量: 7390\n" - ] + "name": "stdout", + "text": "用于训练的图片样本数量: 7390\n" } ], "source": [ @@ -235,7 +218,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -388,7 +371,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -400,16 +383,15 @@ }, "outputs": [ { + "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAC2CAYAAAB6fF5CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9e9BtyVne93u7e1327bucObe5acRF6MJFAgwi3CxLBklIKiiqcLliBSjKuOxUkn+SGEyRyKbiFGW7SjjGKZKq2KGgHBcxRQVfgGAnNgYHy8SSHYONGMFIMxpp5sx3vtu+rrW6O39091pr729/55xBo3M0c/ZT9Z2z97r2Wmuvt99+3qffV7z37LDDDjvscH+gHnQDdthhhx0eJuyM7g477LDDfcTO6O6www473EfsjO4OO+yww33EzujusMMOO9xH7IzuDjvssMN9xM7o9iAivyQi3/eg27HDDl8oEJF/KiJ/+n7v+1rGq97oisi09+dEZNH7/qdezrG89+/13v/0H7Idz4jIH//D7LvDDvcDu9/oFwbMg27A5wrv/Th9FpFngD/tvf/Hm9uJiPHeN/ezbTvssMMOm3jVe7qXQUTeISLPicgPichngb8tIoci8g9E5JaIHMfPT/T2aYdDIvL9IvLrIvLX4rZ/ICLvvcdzf7+I/IaIfFhETkTk90XkG+PyZ0XkxT6NISLvE5GPishZXP8XN473vSLySRE5EpH/pu+xiIgSkR8WkU/E9T8nIldeiXu4w2sfd3snIr5ERD4Sf5//R//3JSLfICL/Iv7O/42IvOP+XsGrD69ZoxtxE7gCPAX8GcL1/u34/XXAAvjJO+z/duB3gavAXwH+FxGRezz324F/CzwC/B3g7wJfB3wp8EHgJ0Ukeekz4HuBA+B9wJ8Tke8CEJG3AP8j8KeAR4F94PHeef5z4LuAPwo8BhwDf/Me27jDDvfyTnwv8AOE318D/A8AIvI48A+B/47wnv1XwM+LyLX70vJXK7z3r5k/4Bngj8fP7wAqoLzD9m8Djnvf/ymBngD4fuDp3roh4IGb93Du7wd+r7fuK+O+N3rLjoC3XXKsnwA+HD//t8D/ttGOqneufw+8q7f+UaAGzIN+Hru/L6y//m/0Dttseyd+vPf9LfH3p4EfAn5mY/9fAb6vt++fftDX/YX296rndO+CW977ZfoiIkPgw8B7gMO4eCIi2ntvt+z/2fTBez+PTu54y3bb8ELv8yIeY3PZOLbr7cCPA18B5EAB/O9xu8eAZzfacdQ7zlPAL4iI6y2zwA3g0/fY1h0eUtzjO/Fsb5dPAhlh9PcU8D0i8oHe+gz4vz+/rX5147VOL2ymUPsvgTcCb/fe7wHfGpffK2Xw+cLfAX4ReNJ7vw/8FF2bPgP0eecBgbJIeBZ4r/f+oPdXeu93BneHe8G9vBNP9j6/jjCSeonw2/uZjd/eyHv/4/ej4a9WvNaN7iYmBA/zJAYDPvSA25MwAW5775ci8vXAf9xb9/eAD8RAXA78RdZfiJ8C/rKIPAUgItdE5DvvU7t3ePUhE5Ey/RG827u9Ex8UkbdEr/jHgL8XveCfJfw23y0iOh7zHVsCcTv08LAZ3Z8ABoRe+jeBX36wzWnxnwI/JiLnBA7359IK7/1vE4Jlf5fg9U6BF4FV3OSvE7zk/zPu/5uEIN4OO2zDPyIY2fR3wN3fiZ8B/lcC3VYC/wWA9/5Z4DuBHwFuETzf/5qHz668LEgkvHd4lSAqHk6AN3jv/+BBt2eHHXZ4edj1SK8CiMgHRGQoIiPgrwH/HyESvcMOO7zKsDO6rw58J/B8/HsD8Cf9boiyww6vSuzohR122GGH+4idp7vDDjvscB+xM7o77LDDDvcRd5yRlnhD5xzOWc7Pp/yjX/pl/swP/gCP3rxCtVwgKLTKsNbivUdEEIEwecsBChFFkJZ6RPUmTokggCB4FIIH8XgfDiBCWEY3y0GHoyBKAAVe8DQoD0opRHzv8Dp+cqSUCU6F88XrQ6n1fufS1AoS2ysCzvd3QJS0134BLt0TwffbdoHVEUSpcHVeUPEeeu9Jd8nj1vcQwcdF6fzee5SO7en1qUqpNE2z/T9tn9Bf3sel17axX79dIoK1FpMX3HrpJT784b/JH3/3d1CUZbu+vfAHgL/0l/7Sjlfb4fOKD33oQ1t/23c0us6FN/oXf/EXef75T/PP//mv8S9+459xcDBgtZyBV4gIzrnW2HrvCO+gRGMbPgf41tClY4fVwSBbAeWjMWD9bQxbdJsHYxONuO8MiPdu86VeNxgia/PU+gZl2z6bRkmQjXU+Xut227G2bX8T1Z2zPYWA93H44TxOYqfg14+X7ncfqfNIzwHAu+7amqZpt7sbj7/NiPbXbR5j814pCc9XoXBVxfWre/zlv/yjHB0d8Sf/1PdSlOVdDfkOO7xWcUd6QSmFUooPfOADvPOd7+Jf/svfAGcxYhByvO8ZDII9c61nFw7dM1lr3+CiQcP71i7d2bOi9YTBorVuDa0ohdIKUWrNo21P7bskP5vtcM7h4rrkuW823yXXUrr7s3kt29B57a1rSrp57aXG6/cEw6a1jsdNVjQY0nS9AKIuGvxwfevf19uyvZOQNES5ZH3aZtMj3jTAzllwDu8tHo9tFE3T8D//T3+dZ599pu1wd0HcHR5G3NHoJuNzfHzMO771m7HVqqUavLfRaYwvlw+0gNamfeG9KBBwvsbTgHRDYBFBvAGvo7PoERyOBpeOd7FBwWQJgUYQD2istdE79ngJ2V4aXDRVLpg6BU7CMVoD3XrH0YhodcfBrgA6ee8+HNmz3XgE8qPzOoMxU4iPHQTB4/bWdR5z6nQEvPi10UDoOAQcuKY3SvDd+rbz6Ba391prfYFK2Wy3w+MDYxMeyZZ71D/GZUbTA14JKAUieO9QXljOF7z/fe9hOj3fGdwdHlrcNZDmnOPpp5+mKLO15a2n1S7pUpd1HG7gT6XHYngfjEl46WzPeLYHBqQzRP1z9Yxl/3hpuJuG/mt2U6QdyveP1f+e9u/axQUDddmybceVSGEkj3P9nN21bjten5uNR+s+S8+Y+c7obTVgG53HpjfaN6jtcg9iPeJCB7CNQuhTG93zvkjPbDtvnmsO9kp+7+P/Abczujs8pLirp7tYLvhj73wHTdO0HmVaJ9FAAttfPO8SF7B23G5ozMWIUrIv/cPc4QXtG+FkRJxzkVq4GBjqe239HJf94112tuR9p2H45jW3x9ngYHu3KXp+HZ3R77za3frt6Z3fQehAlLT0Rhe8lHVel/UOapNO2RY0E6Lh3bi2zQ5l83lso2o2P4edNVjHd77v21kuFni/HhjcYYeHAXc0us45/q9/8k+4+sgBYdCegkl9+EhPrntdyWv0cbDber8+WCClhEQgrL+cvlU0BMHA5fwi9AweXaCq2z7uuyVo0zc6rbFq97o8kt9eAuue8cWGtU77JpO9ZhwT39wfzuNTK6RlwiON3TOYm51fL1jn4x3peaKXXf+2drcf7+K53g2b53U2BFlf9+RNfuPX/xnW7ozuDg8f7mh0rW34Tz74QWxT0xow51srsO7V0PucotjJQjm8S9ZAgU/qBR8CV3G/1kPbcHf7BnCbIXDOBQ60J6kKZ3XBc3O9hVvQHh/ZIuW6eN41j3fL/qmzIHYsPhrAZFz7krN1OiTxutLdYyLH2jPe4fydQV0zrukaXHf8bVA9brrXmGjZ6c6fnvcW9GmKO1EMfXjvaZqG/+zP/cC6gmWHHR4S3FEyprVif3+Mp07u3SUv1UVvajOC3r3JluTFbVITbVCIzj5e6nH21gdvdZtWNhj1taH7lv0TLlInd95n83o32OSLXqH3bDtsGtZD6qg2PPi00dqAwEeK42Lb7qQu6G3ZdTDpGFtsYJ9G2hLa3HreOyEcS3P1kSsYre+6/cOOr/3ar1377pzjox/96ANqzQ6vBO5odP/BP/iHWNsgyiHo1rtNPKUnvvtx+34Qqh8Io10f/M9Ov9tfF40IFx3STc52k2Ns27OFC03H7VvyTdnTZoR+s13t+bYE4da+c+GSL24XvdS1ZRKmMSTD3dIJ6ZhrpxE2LqbHg3f3Z1uQq/PIe+2Uvs292HF07XyFAl8C4hTiHb/6q7/Me977/lfmuK9RfMd3fMdawLVpGrIs4yMf+cgDbNUOnwvuSC986EMfihxj0BG5NPBPw1BIY+nem9xNUOjzjt4TKYZ17zAhGU6RqLG9xNHse29KKYzS5HmOMRlZFv601mitIWlYe5703Ya/24JI7d/mNu14/y4G10dPNhnERBcIQWfb3tKo5JXOww3n8uGP8MC0qHhcaY3k9o5I0EoF77l/78KXOKsvdJzO+o5K3jhG2iZdx4Vr9S0pfSmF04f3HttY/sqP//d33/ghxjvf+c4Lv1djDO9617v4pm/6pgfUqh0+V9zR0/2df//b3Lj2CM71HKNkENa4wLQsLdTRzvXHxAJiIQbVNofAF4bqauP7Fu8UQItQlEMg8JRN02BdA2LxVYWPw+JtHvLm8dPny9ZvXHK4Ni+XGlwIRqr14iVO8xVBicLHQJxqr63/gvVUAhdYivXOqv/9ggzNd/use9e0Iwvvehx8GDJcPFf6P7bdpZmH8Tip/d2iiyqHdD/SVO9P/N7Ht9+0HXj3u9/N13/91291EvI851u+5VvQWvNrv/ZrD6B19w/vec97yLIgV/37f//vP+DWvDK4o9EtcnMh2LFp/DYRlnURdqXCtFW1ZkQhGJ91A6IuCZSFfbZH4ZUxlMWI8XiPshyglOL4+IjT89t4ExQGztoLx7kX9K/T94xOaH00IMnG+c77Dl99t52sG1MR8M5tTKdNNEfnMAoSpnb0PXUu0ruDwYC6rsP9UAprbTfra+OaLly773ViyYBe0kndTbrnhVZ1cum2vT54snevhZUfPrz1rW+9oy68KAre9KY3vWaN7nvf+17G4zFvetOb2vvwWjG6d6QXhoNB9yW+7dYTvMd1uUJYrSC8VVFKJcloKZR2hFlnGXiFqLhc1lnEPu+Yps2G4TVIG5ZPBkGBMowGY/YODzl45ICr167zlW/9Gr7kS97MaHyA1marsU7nuqwDSUarz+fK5oyuzhb2eNrwrVNBBEvpoooBPNaD9kKR5YhSODrqRiQ8lJbKiPdBiQ8z5lRYonSgGMrhCOs9ymiMztCmm5osKp0RJPIZfY/eObfOEsCFvA6iJNI93b7OuR7h3CHNc7mM6ujIkLDroMgvPJMd4Lu/+7spiuKu2z3yyCN827d9231o0f3F+9//fr7ma76Gt7zlLWsdzwc/+MEH2KpXDndRL4TosiTvB2Kgx/cnedFz1uJnh5Is7hOHoXH6a7BUMZNYpBH6L+mm95eG2WnUu74taKPJCsN0es7JyRFa51y/doPHn3icvcmQ3/3d3+Z8eoKtmzh9uWt3OlbKodCf/HHBSG9zMel5zht0RDiGYl2nG+6g9uE+2sauHcv1vFxiUCu2Jtx372msQytFYfJAp7gVznuMyRgVe1T1FNu4rjnR+/Q+cETO+nVjGeVvfQ+936GGXBRuzZgm+ZtSCrd5Q+g8/k3ttiBhKnZ7O1+h4NxrDE899dQdvdyEPM9bdcOv/uqvfr6bdV/w/ve/n6/6qq/CmIum6Yu/+IsfQIteedz1ySaPKHzpr0npA1NgxbeelFIpKCYgGhGD89HASI2oaL43PNCLkrPLaIye14Xn6OSYW7ducXJyxgsvfJY/+MTTfObTzzMoR7zhDW+iLIYoo1G9RDHpHOl/ay2XYc3D633f5kGv0SBrFGrnGhrCULx2FmfX8ysoQFw/8U8MYtqQ/NJojcnzNsBmdEaRj9jfu8r1Rx+jKIZhnQocsojgvOsMuay3P50oTfToL+urIZTRnTGOs+K2GdzNe9uHk06VtjO3Lw9f/uVffkE+BoFmeOSRRx5Ai155vO997+OrvuqrWg53EyLCn/2zf/Y+t+qVx+eQxFza4FL6S15VyHHbGyKveYjr7uJW3rR/lq30a0wRqQ1FMWQ2m7NarVitVtTLFefnJ/z+Jz7BJz/5SfJswBOPP4VWOUqZmHN33eDn0Yhtnn+bUb1XPjhe3Gaz23kRNo4ctNZ4gbIsyfIM631UL3T3pw3kOR/aGikGYwoODq/xxjd9OW94w5u5cf1RysEEpXpeQhzze/GgaEcWrUHtdWCtYqK3bE0tYvSFe9fOHIw/gs17uBb8ZP15vqx7+RDj9a9/Pb/zO7/DRz/6Ud761rdeWP8lX/IlfPu3f/sDaNkrh3e/+9287W1vu9TgJly9evU+tejzh7slMe9ejLVRaTKqfm1Fisq3XlMysNIAOtqgBhGzJr9aMyxhYWuwfMtDrk8sSOahqmqsdRidIwhlaajrGmctt269QJYZnnjidUxnM27d+iy19+AanOvOuaxWTEZj5vP51kBbS3akdnmi4qC9HT3uN7UfPBZBp50Bj1fhGrUTnBKyLMNVFXVdY4yhUTHDmgNFyJqmdPBaszwPp7fCcDLhicdfx97+PuPxhCIfUFUVw9EeJ+fHUC/ARadUabwEmgBUq1aQSAGo3qjDRRVKmnVnjMFaG+gC182s69+dRD9tM6FrnVkaGfWe+Q53x6c+9SkgvI/PPvvshfXGGIbD4f1u1iuGd73rXXzd131dS2e+1nFXT3eblGpz6JyqQ3gP1rmoPU2eUDxO6xOpteP2h+x3jpB3uQR8rwNwzgUPt67DUBwVtLpKs1qtODq6zXQ654nHn+Sxx57g8MoVRGu0CakOjTEYpVksFpdee99jTdNng/EJf1spBkCJZv1yAp8LwdPF+dbz9t6zXC5bgxZoGtXKuELib4t1DVkmPHrjUQbFgNOzU87Oz7HeMR6PuXJ4hSzLI5UC4MI9jjkv+gazT1P7GOwLwbXWz8Y1FoVsLI9VOnrXu+0Zbhs59D/vPN2Xj+PjY974xjdeWP6VX/mV/IW/8Bf45m/+5gfQqj88vvVbv5Vv/MZvfGgMLtwjp7v5PXk73TpHqBjRy30gEpf5NaN1z8P1u7yQ6dx1XSE93Za1Nc45rG2C191YptNzimLAZHLAaHTAo4++jkSP9JOQDwYDsiy70NH0O5g7e2f+wqdgVMNkDw1oF+RiCRpBrMOtagyCisqGdoaaCGU5wDlP0zjybMC1q4/iGs/R0RH1YkU1X7A4m7JYLDg4OGAwGLXBPS+qVSX4nkGHpEKQGAD1bXtB1jzb/l/rEW+REm5iG3++M7SfOz7+8Y/zFV/xFWvLlFLkec473/lO3v72tz+glr08fMM3fAPveMc77hg0vHbtWnBGIrTW/Pk//+fvR/M+b7ij0b23F0Tav3Z6b9RSKR2NmqgYPOuYXs+6nCgtAy4Y6u48XbuCjEkjTvC2YblcUjerjgJAyPMMbxuaqubk5ITxeI/Geuq65uDgShh2+563KbQBtbSs37C0Db12B9agH6DqAlgp2JjoAgf4aAyTwfc4RCtMnnUz8SJBKiIURQlAVVXk2YCD/SuAYrlcIpE6mE0XTKdTTk9OUEpR5GV3v3z/uSTj5xEVnk+n84oZ4SSsc3iMMReChnfqdFJnLEigLLYSDju8ElitVluXiwjvec97tnK/X0j46q/+at797ndfamPe8IY3oJTipZdeurDu1e4Vf07VgNfkW6QMW325FyCu8467FFxBFRF5Q7vmNfVVqtuRPGoRoa5Dnt/xsCTXZq3kTrVqqK3jpZdeYjGbU68qnnjsMZx1VFWDNqHkkDE5iGZ6Pse6IJPa5pH3edt2Gm/0YnH9BD++/S/Er6TlTVHB+wRwddPqc20giqMhDRUX8ixHibBaVRTFkP39A3KT4SsbZGN5AUqDVsyWC07PppyfnzMZjzGiWm4WAaVV/FtXJ/SNqtY60CcCosBiQYNX8UJgfaYgtNnP+uqHoJhIgsGLVMJl9MMO946nn356q5oh4bu+67t485vffB9b9PJwJ4furW99K08//fRr9vdxx0DaNoSJrGzYRRd92GAww8vXvVidsVr3VvvrEw/q6UrvtIG4LUZY6F50Ywy1DRH6YZkzHJYMBiOWyxWrxYLVasXt27fRRnPz0Ud54onX8dxznwrJfAiKgDzPmS9mjMd7TKdn+C3FH9sh+JrXHVsjXRKgtL7PgUpYEKb+xnwLxpi219ZaUxQFy9kcH9uktGK1WlFkBcOiBA+LxYJhMWQ4HFIMBtQ2nOP8/BytNSenDZO9g/W2927hndQiIfl790ySt9+WQ+p5/Gl/R9BaK9a57nR2zcXsZO2z31ENnxOcc2EElG+fZPIn/sSf4Gd/9md55pln7m/D7oI3v/nNfOADH7iwvK7rtdmUCcvlkrIs71fzPu+4Z6ObDKEVwPeLeyfZEVGETxj2xyq9gUZYP9Zm7oD4gTTsbQVnvtu+X1o9bJEqEQPi0VlGluUMRmNEC06ELDN4mwdPTylu3z5GG8ONGzeom4bnnvsUTVXR1J7BaMheNuD8/KylNtYMV/yslEKLWu9MeiEpiZ2Ai4G//nRc50NAS5S02rG+AfPOtZIZpTXL5ZIsKxgNJ3jnaZYVe3t77I33KMqC0XhMXg5YrSq01kynU24fHbO3f4iXDFE1OId1DTqpKDYke/3rDF5xSJITDGrgoVvOLVIp7TXFy0/pKPverpKkbfFtJ5R0vYnS0a9RT+ZzQZIv3gs+9rGP8a53vYtf+qVfYjzePqX61TKLaz6f893f/d38yq/8yoV1h4eHNE3zqqcVEu5odPsvY8qfEMxd35pKV+q7tUFJ+nXxeNsM7prhbQ0eLQ0R2NBezodoA6wH6z3GKJQSxqMhog06y8AL1XIRDYSjrmu01pydnrK3t8fVq9c4OT0l04qz82POz09QYsjzjLIYMp2exWsH70OiHqMNmcnQOkPHGTNN0wSv3Id0hYIjL4chgOUb6moVPEXnaZpodOLkiK50fRjar6qqnR1XNTUmz8izInZinjzLGZQDlBbG4wnD0YhlVUfjbEAszjfgmyA/swrnLFpp2hhn75m0QURnwfuolOh4eetsoE+SzQ2MRbC9Lnj0XgI9lOiTwFP7UBU6nqfLmEY7TKqdbbOf7dDhB3/wB5lMJve8/a//+q/zPd/zPfytv/W3GI1G7O3tfR5b9/nB2dkZP/ADP7DV4L4WcU863c740jqgSUCfNJ/9aD1ig/8rNm25VY1w0QDLmjA/LIdkKbqaYC3JAeIQ0RRZzmpVMy5K6qpCTMZ4b8J8fo7UHu+knep7+/YRjz/5JDdu3ORTz3yCyeQQvGE4HOB8GEo3jcVhqZZVlH8Jg3JEkQ8YjMcU5QjnLPPFLAynfQjQaZMxmeyT5Tm4htOTY6qqolrOEWXwTc3KNeE+Rf2tMYbJZMLZ2VlrgJumIc9KclPgmsTh5m2UGqBa1dTRA5jOzgJH7Dyz+Sxw6S5U6SCOOsJoZX0GXFI5hOcaMp+p3v2WnrKh/S1oAeUjoetbDje4tkERoZJs8DL5GKD8zui+EvjlX/5lHnvsMb7v+76PD3/4wxweHj7oJr0s/PAP/zA///M//6Cbcd9wV3phnQME8K2H4r0PEXdPKw9LovrwsiragjXeX5CGXPB8e+fsG/pWRJBkS3HrtG+WZTRNw/7+hKZpGAwGeOeorcOjAUtZ5CijyYswweD49ik3bj5GtVzyqU8+w3g05vx8imjFYDBguLeH8jC1p7gMstywv3fIZP+QycEhh4dXMCanrmu8d3z608+S5zmPPHKdshwwKEvOTm5zunfMYjHj+PSY6ekJdbMkb8IEklAWPQyZqqpq8wGfn5+TmUCXOOsQL5g8J8uyVlGglDAoB2TeM51NEXQwlt6xWiyjF90vea/wPmio+4Es530I7HkfPHWRlqGHmA9iy7NKKoj05FQMKHpCsM0733ryrRa7p93ORF8wxDt8bvjpn/5pBoMBP/ZjP8a1a9cedHPuCZ/97Gc5Ojp60M24r7hneiEgVNldl3bZNQlVXBGG3G0wLXCUm9jUbrpoYbdJKtJLn0T5zjnEd7ypMYaqqiiHgzhRQjBKkeUZy6ZitlqiaxWm3CqFtQ1NY3n0scdZLmcobRjujSmKEIRTRuFWFS+Ipq4bRqMRBweHjEZ7XLv5OIdXHmE8nlCWJYLixo0nKMqCvb39oBOua8qiYDze4+TkNuVoyPOuoao0y9USRQgcIMJwOKauK7IsZzabBuOq85BYvPEMyoKiKDBat4bXZBmiFbnW7Ok96rpmcX4K1tNUdTBvzgYJGBINbpfPN95VEg9NUmKQ+OewhYJ25lrf8K6NgFzqEONz7dVVcxdSWHbPfmd0X3n81E/9FMYYfvRHf5QbN2486ObcEc899xw/8iM/ws/93M896KbcV9yVXui8U48oh6JLGhP+D5ypYNphf/BoQgrGpHfoi++3BtLoybA6qx7Xb7yc0s1vSwoA59yaZzUYDMi0wWMpyzBFdj49p66rYChFsVwuGE8mPP66pzh66ZirV6+xWq04ODggy3OqxYp8MOL8/ITBYMhwOKbIB4zHEybjPQ6vXKEoSwbDMTcefRznLM47quWK+WyKaE0+mJKVA/ZWB9Sriun0jGFTo3Ccz87IswGZyZjPZpF/NWidoSTDNZ5MK7RWGKPIUu4DFatrGA2isXbFaFAwLUpsczt6wqF6hm3qnuF0Pa833EpFd8OTnrflY9c4dokZyqK/muQY8Zk6l0YotFx8okrWotFK2sTuu4kSnx/85E/+JMYYfuiHfoibN28+6OZcwGc+8xl+67d+i1/4hV/gZ37mZx50c+47XoZkrBO7r3uovXBJEt73g2obHO02g7uNeticHNF5UiGQp0SD7zwv53yI/HuP1jrkMlBdghZjDKPRKMqfAo/q8WRZwcDvceVQU61qrhw+QlEUOCXkhXB1MOTmzUdZVSu8BaUC9zscDhnv7TMYjiiKYQg8+Rrb1FT5iqIsGa8WHIkizwyLRclTT3lOp2fU1QrlPUe3XyTLcpbLJUYbTk6OKYohxmRUdUNmFIOyJM9jKaIipxwOKIshg8GQcjjEe2E5mzE9n7Yefr2q0Mq0ErBOxqdocx1D6OFiXuO+56lInq6PmTh9b/+k2ZX2z7VaMryut5oAACAASURBVNpCoGmSSj8/b38245audIdXED/xEz8BXCxs+YWAj3zkI/yNv/E3HnQzHhhepk53u2fivceLxBy7QnxtQxCH7kXdpntdeyGh86ToAj89UcTasNZFQ+xjhC8N10UJRVHQNDXg2ymt2hjyvMB5oalDkG+1WkSFwJI8N1RVEwzr/gRvLM5CUeYolZM6kGpVoZSmLIeMRhOMCTkWrFM0OvCteV7Q5BnT6RRjNIIwzXKuHF4FPN5ahsMh1jYsFktuvfhCrHyhaRqLEk2uNEVZkJlQB64oyvA3GCAmQ0STZYbxeMT09ATfNJgYhNMmZFSzPiZ9T+ZXFCLpvpGiohe4V9UTqLSSth4XnCqBpDJNfQ1v2/ludtK04oWWK97h84dkeHf4wsK9B9JwrR5zEyKC4PBeBx5XHD5OVRLpEmpvcoL9/dvj9I6fZlMhkJJ4h+VhWcgvm5JvWxrb4CrPaDSKCgBLlukYaAvGR5mQDMeYjExnrBYLqtWS+XzOYDDEORey9ltH0zQopRE0V6480moonbOIBE2lyTRGhykAdeMQspgUR2i0YjgcsVwuyJucoixwTYNtLDrPycwBq9WKwWBEtVqRmQznLdPzaTtLz7sQuNRKYWLBTZ2FzkNiACsrSrKybNUGdV3T2CZ0aj5JthItEDkcggQwOrSBCFI65IWII5Ww3rWdWheUSxMjaJdvBkEVcqFTDdx/6mB3fu4ODyfuKZAGIHgkJBtc53R9KgnTnz8WvwkgNr7EqvWk2nIyGy/x1jnJF3i/NHstFq+0DkQFraj3DMuS4XCIUopyNMb7UC1C62Ac6sbiddDXLmZzGteQFxlVXQHCaDSiqivqxbxNaWh0xnhyncFgQFEUIb9BUcTcEik5jG0H3FppdKbRWnFweMh8asKMt/mM1WLO6eyYsiwx0Rs9OztjPNmjyApOz08wWuOqGpMZjDFkWRGMbCuYDXRJnpd458lMhifwp4hHK4Otatoe0vfyJnQuaTCCPS+V9vl1PG9nONcNb/s5mk/Ve5bpdxEfVwisqXVvecfn7vCw4mVxurDOw6aZYsHI0pndfi0uOqlZwmYE/LIodj+Ithl4kRjISVI2EaEsy9bLTcdtGguEwFFVrfCuofEe11TMZwJKMRgOKQdDRsMRTdMwHI/whOmHx8fHTMYHoA3DyR5FnDJclCVaG3Ss82bxWGdxLuQ50FpjlMZP9tBKka+WzOdXOFeK2fk5i9WKq6PDmJayoSxKlIdimbNUGm8MOuZLMHmOzgpUnqEyg1YKrRSZyVBKsVx6hsNh4LRFyDKNm63fr00uPag+Ek3QGchNvlXFAJzEUU7H7QbiyCad9qYNjTyCdS7mn4gVhKUfHdhhh4cPd1YvREpBttjEFLxuQy8ioDoez8UXNfCCsmas4RKqQYIg7YIN3mIwiLOeUmcwHI7IssChZlmG1prcZFTVKlRn8B7b1HjXxKrDYX+T5eiqYjAc4X1I7zifzbl9dMRiteD4+ITr1495vXwxo+GQohyEKg+ZaWVwoeNJ7fQoUW3y8LwsEBV44eT8f+r3/wAxqq3ge3BwwHw+wzqLUYoyL9AimMy0eSGKsiAvSwbDEYNyFBQOSpGXoYBhXhSoOKzP8gKthabqUTQ9zrXzWtdvdOo4+x1cMLZhhJN4+bRNCJpd5OnTwdrAnI7J0tP0aXV5R7vDDq913IVeYM3gXdBqQnRs4/x63/N45GKik01czF+ggH6tsuBFJ8MN0JZr855QKVi1OWtnsxl1XbeTDIqiwChN08REGrYJNEDsDAInG4bwq+UK29hQfWE4ZLVacHZ2zmq15IUXPstqtcRZG4f7Iedua7y9i7QL0TClGxMmKBhjyLRGRHF+eoZoQ7Wc8eKLS/b39wHajiHLMrI8awNY4XzhnGHSxSgmNBfqpkGsoRwUFHmBaM2gKINMy1sk5qfwWLxPaTahJXI3YK3rpgYnHt15lNJY17S/ibaCRPsjuJwuUPEYfYWK9z5UFd0Z3h0eQtyVXmjlPxEXJV8+Rr+3vcaXv1Trnk7wsbzfLA65Tk20Q1w6TaiPErH5fN4K8YuioCzL4N1aGwtlhr8m8rTO+ZBDIebUFQlD6boOuQy89xilmE1POT8dslwuaJoqtsV1bY6ebbCxXSIY7z3WN0BonwJwnizPGY6GjIYZR0dHbZIYrRTlYMC0qdBGx04i3A9RoTiloFBKk+V5lMxBtViiyoKiHATpl3OYmOKSjXvXjjaEdkTRVyS0HHuSF0TJmLW2ra3Wzjq8RGd7YQST6OEUQEvPfSOT1A47PCy4s9FNcZgNQ5tyLjjvQlYwiRHy3pA0BVs2OdlN1UK7LCoghMAhxi26pvQ8q35+hm6mmm+9UGMMTdPgGhsNb6gmkcUkNa1HmWVM9vYwxnB6ek5dN4gIeZ4zGIw4Pj4OXq3yHB/fxjlHY2usy0KCGRVNsPftLKxk6DUgOqgYtNKI72bT5XmOrS17e3thW63xIpRFSdNUVFXVG00I3oVJIEWWtWqNLMsQQtrF2WyOT9pjCZ2OFoWVwGenuNZaNeOoONg6zPdhllq7JvWoQf6AUtIme+97sJuB0bTMpfzH7VMN599RDDs8jLgLp9txpl66BCWJJ0yaz5C0ryV46TxBANnqEXUnifFv72IUPB0kBOkuvphRH+HX0z2m3K/GGKrliizLo/cqiGic89imamerFUWOcw3n56dM9iYYozg6eok8z2mahvF4zGw2Z75YMalCPoemscGYe4+1gdqwtsHkeVv40dtwHTWQiwTDqxTiPVqrqMVVVNaGjGjasJxNEYKiIjM52oTlokJuC6UUTVNTVzWiF1gci8U8SMhMxmIxI8syhuMh6kgzGAxwvbykIgpliPkQImee+FaVZqF1nqfDh4TnPnzulA/d/e8b2vSbSLx2/4mtTwPuio/6nae7w0OKe1IvbOow07LEY4oXUtbYTk3gEdGsUQMb+yfqQqSb698/50V5kZCMcTD4wejhgu4UhNlsxrAcMJ2e41wwloiDxqJ18IT7xSDruuLWCy9S5Dmj0QDvhdVqFbndEdPpOWI0y+WK5XLJuLF464Km1YZAo7M2Jl+2eO+wFuJMkThUdygx6AyGwwFXr13jk8+cc3hln9OTc6ytuH10grWWyWRCkZWooWe5WGJt4JmNMczmM2xQzqKUpnKOl46OuLJ/wOnpKYE0COcONi0mIbKentqsNwDZ7m22/LmkjLrh2cZ5EGvPtE819HzzNU82bRNonZ2x3eHhxp2NrgjWe7QHL4K+ROIVPNRuyNilXoymeC1yflH+1Z7uDk1JnlIqnJhoiVDnzFLXlrqeI8BqMQ9BMpPhveBtSBBusiArS9xtqgZc1w3Hs1k7+aGqLaPxmKLI8ALz6awd9jdNQ71agfeYLKPI80gpNDiXcusKeEvjLdqB0QLicB4GoxFXr17n5PSE1XKJ1prj4+OgpDAZjlDbzdVV7CCkzbGrdZro0XB2dpsiLxiVOS985tNAqCqRZVm8dkXTxKfTC3aFjG8u8r/rfO9Fvl51kyV6zy15r9ueaddRbv6U1o+/LQnODjs8DLizeoF+8MpfCHq3Ufr2Re4nw4FgdHs1Ji4RxrceUfjSvrCb00+1VpFLDIZWKUfTOHTmwDc0ddOmTAwpHU2gIBQQPVitNYeHhygVSuG8dOsWRhtms1nYN9MMJxNOTm+3eQO01jhrWS5n1PWKxSIl+vZhCjDgvcV5C15QOtyPxtZowElSEQRdcDkcMh6PeeH8jOVsxt7eHp9+7jNMJhPq5ZKsCDIwkxnqqibLiAbfsaprTJGD9UxPzxgMCsqiZLlYhDSTAlVVt5yrSKxUwaZBvVxxkAzrts5xLeC24em2x/R+nT/uQUuYmtzPybDDDnfC2dnZa6ZqBNzF6Ha1wDyqo3dbiO9iLH2eTqluwgLQ5t9NBR/bPzpT0Kcw0tLNFzPwqF2TRTkQCy4EwJQH5xXeCXjBGME1FaI1ZVmGAFZjuf3SUZjqSyjhbm2NKE9VraCB+XwRZpxlBu8anK05Pz/lfHrK3jQkKK9sjTEanMXiqZqapmkQZRCBzCvEgvUNWmlAxwThgdsdDkJ5lcbWVIslN649QlVVaC0sqwXlcNAGoJomXJ/JMpytcZWnKHKMgunZKWVZslwt0EpoqvpCpdg+n9rRP73n2dIG/e3DM1FxJp9zvqs+0dsueb3JUCfHeqtBjZ23IK2Oe4cd7oZUwuq1gruoF7rKAheGnj0ZEKgwpI4SoU72EAyw6w1Rw2FbvqE7XvgU/9zF4aoKM5q0cyGIp0JwTCsTttEh1aHULmYZaxAFRhtKrcMQXQSdZXijWa5CwcrFYt7KzZIUrSyHraqgHA0REY6Pj3n8ySeoVitm52c4P0DjMVkIlNWNpbGWDIXyghePowGfhfSKSsfAYND6WldTrxYoFxQW8/k8Js4JuYG9c2HmmTaIDvdotVyGoFpVc3x0G2stTV2xWCzaahODwYDz6fmapwusGbmUXzc9o34HmZCG/955HF1Zof7zC/RON5JJ/HzXk/Z/Sr5VS4hWmJgFbYcdHja8rMoR/WXhBbLRburWOAdVQ6IEoqerYm6EO/CAbWCu85tbY5CCNG0Z8+BKQfQag/GXYKDwbdIakynyPEMRDMhisaBaVdRNRVWtWK1WgaOta6pqRWODBG6xWDAaTdBaMznYb6mHs5NTRoNhCMwpj0GHmWAmSMJwLsi0fEj2rkQQLM556nqFiNA0DcvljJPbR1SLJdOzM6pVBYCtm0hFWPSgJC8KRAnNKnjRTd1gmwZlQl6Hpg4cc1mW2BjMGwwHnLz4/Np9FaGbDSYpwXwIRCZdrnc+lGfvnjJJapb27f8eLvuddMHOzvauyf020kjusMPLRROCFa9a3H1yxGVDQAG86uk3O2fW+w0DLXLBaN/1+Fw0zkgo9e1VYphD8Kl23fTULFPtcETixASjM+bTGYvFHPFQNzWrahmM7aqiaSwpkY9tHJVd4X1MflNV7O8fYK1lOp0ym81Cpi+tKUwRyuxIHjhtYhYtolrAhXG8dUFqhoQKv6vlAm9rXrr1AtPzM4zSIUeBCGU5YDQaBXmYWlIOBigfjHXwxj3L+YIsNwyKck3ytVwu2dvf5/z8rONaew+nu9UXZXiiet825GT3iu55sfa7SMfqa4/759lhh3uFtZa/+lf/6oNuxueEe/Z0N6PNQaq7EWRJVYGJ003FtcfYnBTRHbMf2IkHpm8g1r1tC2gxEMuZN01DlgcKoCiLYBCV5sknn0Ssp24aXnjx+eDV1g11HarzLpdL6qYBhMa6mHsXRELwzTnHdDplNNlnNag5PT3l6tUrzGbniHi0JuZEyNFxSqsoE/hbJSAaLQbrG6z1NFEjPJtOOTs95vnnPs3TH/84RycvUZqSoijY29sjL+Y0Tc14PMZWlsY0SJGTS9DMLqZV9JgtUztnENUYTdNQmIxVs6RarQIfrgUn6Vl1vG0oxx4mXXjo3esu9eLmve8/tzXZ4LZthdbgb1NGbB53hx0eJtyzp9sPaq2/RL7lQlN6vzTvUy5s28F739ay9ykrWesirZ+/O28o/WJt8myDLM05S56HKL7JMw729rGpikKzas9f1zWLxYKm1dXGXLHeonXoAJyzQQMby6HP5ueYPOPKlVCI0lqPcyFgZ63DE+quiWjEebQ25CbHGBMCh06hVDhPVS2pqiUvfuZ5Pvav/xXz+RwasBK0uGenZxRlEWaf5QV5lgeqRBmyQQYuSN/qZRWUESpUyMjzUCBTFznT+SKpdcEF+++9D1Lm3hNr2d0eCRsCY2lCyeUa3hQ06ysUttEPl00XvkwyuMMODwPuObXjRU43vKxpwLiWzIS+Z9UXzq8frztmMNKdqYaUTnD9Bd3wumPC9KpeURRlMFB5mImWKAZrM0ajEavVinPvcN7jbE8O5UOSdYWgjKEcDBHRLOdzqqZiMV0wHATPMctyynJAXgzwXuGcDdF6FSZd6DgV1xiDEIyXEo3zhlrVNLbm7KUT/s1v/RbHR7d48cUXoQGlBS2GmzdvIt6zmM/ZG49BwnAqTCzQmDzD1Bm2sWQ6TFfWCMvFIpRxP9jnE596Zi1AJa0rGyY3hOBXymnRoVVVq85Yrj/3jqRNx2jLrqfnzeX6283A6A47PKy4axLzy/lX30WqYzXJGP6iSw8Yt2w1SuvoDGp65RMR6DfWbxvShimtzjusC7rUkAbR4Jqa89USrQ1pJlSe54xGY5qqCQUWncfZJpalCcm8lXiuX7vJm77ibfyzf/qPcbOaql5RLRd462gay3iyx2AwCvkNVIESTaYzRoNeHl8AF6rviobGrxDRVIuKp//9b/Px3/53nN2+hRGPGEUxGlGYkulsisk0w+GQxWLOYDQiUyH5TZEX6HKAOEeuDDZOZ26qGmsdmQiTyR71crmuNHChlFJIl7PF4EXuoVWQJeHJRpCzT9J6XLtPou994BQuGNWdod1hh3XctRrwpetapYH0hqqsvajpFd0mO0toDXmbk7Zdc8FOp5lU6/sK9arGHJq2ICW1xeHJMtp8tMPhKMifaotZGqpqTlM5vAPlPVoLXgTb1IjkfNEXfRH/4Xc+Rh2n4VZVw3AwZjTaYzQaYoxhMBi1tciUVuQxibiNEjmlYvYxo9FKOD854aP/6l9gqwWTsmRZr8iKIY89+Qb2Dg45Oz/hpRdfYCyhC5rP5xQpCbgDrwWUohiWOOcZjkbMzqeUgwGiFY1taKp1jS6qX9EjzUjznVSsnefho+46lT+66Jl6H6t1sN4hJqmCuItql0RL7eiEHXYIuCdOd6ux7EVgHB132E1+6PZPSF5n/9jd8fp8cThqCrJ1Xlf/xe00p2l6rHOOs7MZ2kFeligVKIHhcIQxeUzB6Bk2Q05PYOVD+kTnHXmWcb6qqVczTm59ihtX9nlaGWpbU9c1q1WYYlsWA4aDEVmWk5c5RZ6TaYO44D1rrdDGtO12ziEWpudTPv3JTzI7O2acK7wxFJmnyQr+yNd/I14ZTK741x/5CIvZCVpnLBaL9p4558CEXBaZ0WRZjvMekxlsYzFac3J2GjKqsT4jzPdv2WaQi76BTduvF5Vcn20Wtm/pJNfpfdd+K9Gwr42Ndh7vDjvcY8Kbbcukk4slD7XPvfZ1mxe52XazbtR6wbinDGZ3kpWFk6eaaNY2VFUduFXvKcoy5M/VQU+7p4TMaM7Pz1jMc5QtsHUFKFRmUHWNVo7jFz/BfFEzyDNWvRSGw1Ewtt5DtVoh3uJ1RsMSqS3e1Jg8IysLdJ6FYb0IjWjOjo/5g6d/j8nAoAcl1WKOKsZ8/IVztFqgzIim8bzlLV/Ov/u3/y+TyYTZdIbSmsY2WOfIKfDOUq88g8KhPGR5xsxOEYHlcsGFaWO959cnbzY/x6cWOgkVRiYhdadqd+6eo2o5YZHI7abfw4VzdyXaL0gAd9jhIcS9T45IsqMeTysinUxMOrlR8praQNolVQIEFYb3uudJtf9fNLj943fStFBufbVaUjeCs2Byg9ImnFdC4vLMGLI8x5gwO20+n9L4GjKFszUozajIGGRCoTU+c8wMlHlBUZQopRlN9lFasVrOmZ0cU2qDH88ZDAdkRlNkhmI4YLi3j9qboLMs5j4TjAi3X3qR/cmAQgpWuSYfFfz+7QWnJ59hUpZUVmOKfcbjMaPRGFBYV7dD/uVyQV1XbdVeay0TMybLDfhQ70xrHfJK9p6fUqHkkov8baI9EovuW7o2VABxKbApgQVWnjgNPOwf7LpvnwmOXhazmI+BuI3IBWO843l3eJjxMgpTdpD4zzp/F+RGmzpPuPiCrU9HTTPPoOc+pbNseEXJsDu0zsArJCbCqOoV0oDRZSydrlgul23mMGstw8GAvCwpywHaaE5eeJZmcYqtFYhmOCgxcYpqkQllUaDLkslkzJd+2RsZjvawzjI9Pebs+ecYKE12sMRPRuQi+MwgkwnGeUyeoUxINI6EROZaG/aGY8aZYrEqAM8je2Pq+RlNPUVnBcvGMigzVqsV4/GEs+lp9BTjvXbgmoYmzM+L2dI0QlBsOH9RfZC802BXU+8Zs6G1gbBI8ShZf7bpOfRyF7e8b9JUt8fdeNay3pluft5hh4cR96bT3RS2p3XQk4pxkYeQ7RrN3pdWb5tswfpZNlUM4SRKpbIyBE/WBa2uKMWyDtzr+fl5SHCTyqjHqhFZkTMcjxlP9tifTDj+7B+wmJ7gnWcwHFA1DotCqYwbjx1QTq5z9epVvuEbv4XhcMT8/IijF19g8cJnaZRiaB26OcAbgyoKlPJoo8lGJVIOMDoE+B65foOvfNvXcPLp32VgagaTEbePb/PFr3+MUWEojEFlGfOzU1y1Yqky9q8csqcPWC4XWGtDWkedhRwMWsUUlZbRYECe55zMpyiTo9RyXTubomY9uF4n1w+Eeu9RPtTw8HiUC9t6icnafAqg9oOg6499LZC6xavdebk7PMy4d3ph20qJ8iEvLQ+YBq1pWu7lB477kpQNvZNEDW7r37ZcIG3J8KTTVUpRNzV11TAcDoNkzLk28bdtGoZ7+4gIeV5gHXgvFIMhV770OtdvXOezzz3Nye0jSpMzzkrGV66yd3AFM5hw7dHXcTDZ59qjj1ItFqwWc05uvYg9P2exXGBnC576oi+DPEd7mJ3eZnF+hhkPyPYO8UqjRBgfHvIf/bF38plnnuCZf/cRiix0FiMUpQk0iBJHFvNWaK2Dh5zl2MUS0QZEMRiO0Epjck1VrYIUTGmKosRkGcT0miH4FmvO+ahakFgo0vc6Th8pIxcmUKQxRm+sEffpRh7er+fR2Ay2rXXUbr3672Wz3XbY4WHBvdELWzg50pDXw1o0jc5Ib76M6SXrJ8EOBjS94j3PbE2Ols7bpzQImca8p2ksINR1g/dhmG2txVuLZDlZljMajSjKgtFoEmavDQoODw7Z/6Iv5c1veRvz5TmL1RLxiiuPXKMcjSjKMXkxQIvBSYNgmZ6c0MznNKsly+PbVKfnXL/2KNl4zO3pKfPbL/DoU09Rn53DtRpfFoho8rzk2o3HGY/HPHrzJs/83m9TO09TVeQKlNFUjUUBe4cTDq7fpCiGzJcrJnsT6qqiqWuqmLYxJD535Canbmo8YLQmz3OqpQq165A2ruYkPbck9OueUXrGPnq0kmR+nl4gLVQCCbXTthvQrYHS3m+mb3h3NMMODyvuyegqrfDWhXpZrf8TXs42au18q0JYe5m56NGszcdv5WUbutw4/E2ie5FQOcHaFJ0Pky9S3bKyGIaEL3t7VFXFaDQKHnQ8nzGGQTmkLAcURcn+wT7Xb95kvL/PaDBA64zGNiHnrTEYVYAiTLxoLE1jKQclTzz1RVCveL5pOHrueQ5yx2J6zsAoRGluT5cU84provEq3BNRGqNDztmyKBnvHTK5eoM3zt5OvVrQVCtW9YL5qqauwJoM50OF4/PTE24f3aKOmciqumYyHlM3dbwflrqqWVUrMpOTMrz5NXc2BMICLetaNUGgalLX5qMhjkXvU2XjXkrI5DnfqwHtqyb6v4EkgdsZ3h0eRtyT0b2Mk/MoZG1V8o78NrFCt9XWAEsvUEPnL3eMg49l03XMmRCc7boOofq8LKibBussJgvVgCf7e4zH47YsezqYdRZtDOVgzGAwIS9zRAmlGgA2FpJUrOoKowzWNmilUHnB+MoV3vTVX8vrvvj1vP5L38CnPvYx8iwH5xgdPMIf+bb3Mr5xneHVR7BKo330HHWgGbCewhiMuUE9WYVZdQ6ctdTW4mzwJJfLihdf/Cyr5QJjcpx3MY1jEWaolQV1XeGcxOrBrs2pq7WmqsP9S/mME9mTgpaO+L8I4rqJKW3du56+t9Pthk7E+X49kM2Aau8pyvr6fo20l5vBbIcdXiu4o9FNHJ+nrbPY8o1tIKs/hCRtE0vTpOTXW469/UXtHat33JSNbC3pdZws4Rxt4ppVtcJkQRpWDEq89yERjFQcHx8z2dtjOBwznkzYOzjAZEJmwMbKDGK6UuFNXVHVVVRJhGvKy5LcWZrGMBqPmYwO2CvGVC8d4QRUWZIfHpLt7yN5FvhcpTBahwkkRoH2YB15OUCbHOtCFjIclIRcoV6gLC1VUzOfL7B1A1hOj09idQrB17CYL8jyDO9D2XeHY1AUVMtpO3rwkQ5opOPZBUG5ECQjcr0QDGlgFVKhUdCKtiMIPwrajJ7tSML7jc6XNR633XWtMvCO093h4cTdPd12FhK9YWZKRtMZ2n7Zlt7OPd1uZ2S36TRbI07nbSX0jy0iiNOIEuraRS/Pc3p6RpZlbbXf2WzGYDBgOp1x8MSVkLvAGIrBgGvXb1AOBmhjWCyWOOejtCwkyamrVWsczs7OKPMC7z2LxZLhoCDPc5TSZFdzlM649Xsfh+kMBgNUkaMyg4u8t2ssDYEbFULnkZmsVVtoUyB10xotnYVH0tQNhwcHLGYzzs9OGU0OMFnBYj5nOp2ijWF/b4+qbjBGh7LzZYEyId+E0RnWNXgLKEWG0HiHSs+DYDyFoOFtjWovoOmhLV7ZseyJcY/5Knx/ZMKFZ72Zw6EvZ9thh4cR96ReSFNGE/qGs5v22wuUtcsvP2Y6TnsOkf77vjEJInm5CpFQzhyfjDE0jce5moODq7EKRKikO5vNyLKMW7dusbe3R1YUKK1DhWNjcNZhvaOum5jNy7JarTDRexQJBmkZq/YWRYGXDJMpDCAG1N4eq2s3mPoXsLmmFqidIycEpZwLmiulVKguQerAFForamsxJmvvR5tukjDT7tq16yzmc7yzONtg85y9vT2a5ZLz8yWr1YqyCFUulBLGexOmZ7dpbN3K7JJRbQf0npBngiD/0tED9pu6vZ5xbANv6bl21Hq3Qf9Z9vftPedt33fY4WHCHYk15Ql835aXJXi7QJw6mmqMhcCYiodWLSu7g6OjewAAIABJREFULenJ5V6PxP3Xq83qqE313uGAVVO3XrAxBV/2ZV8GhHSIdV1zcnLCahVK2hRlyZVHrjEcjSiKEmsDb7pcrtosZGdnU5yDo6MjFosFzjmapmK1WnB2dsL8fIqvK3RUUTS4EO0vc9SwpBFFY0OtNOccdR3yIHjvsXUdaAzvcda2xsqYMHMu3ZtUbt2YkC5yPB5z8+ajjCf7jIYT9iZ7DAcDvAhaZQwGJUpCxVTfWA4PD0OeCaVwLnmvIQ9vv4NUgBFBp/WpQ3CB2lGJt5XuubdtJEgEW1nZBnfbf96bHesueLbDw447Gt2k94TtBtLHwEo7cUFc1O26WDMsBlB6L9qmt7NttlL3cq6/tEm5IEpRNQ3eCbaRWJnB8hu/8f9wfj7D2lBc8uDggKIouPLIIxwcHHJ8+zYnt29zenqKaywiIQgVEuWc4WK6xMduPs4wGyA+lD6fTqcMy5K9vYOQ4yHxqo3DedBG0wQlLEqHmV+2DjxxP1m6c44qlt1x1mLT/Yz3OXm66U9E0EYzGo+5ceMGxoQkOPPZHIByNMSpcNzRZIyIYlCM8JLhrCdTpi1dLRIiYInjBcLz2eRi+16oB/z6cxK6acEiAupiruT+b2WTVtrNTtvhYcedA2l3kPX0Z4iJqDjRIU5gEEeMjwdhfZwDAawZl01hfcK6Ye5oirYMuHg0Cmsrrl69ztHRESKe8XjIN33TN/H8p1/k5qPXODw8oGkcn3r2OT7zmc9y48ZNRuMJAsxmU+o6byP+ySCsVhVnZycs53MaG3lXramcZeUqyjitOBglR7VaMpvNWMxnrOoaeSkPkx4mE5RRrVwtZUGzNg7qYz6KZIy1MXjr2gi/S3I61R2jjMUqp9Mp5XAYSsfPQw24xjuMEhSawaCgmufMl/OoVuiUBMT0ix6itxqeY+Juu/vO2igj5HBYT1SfPm8+v37dtv72/f2MMa/6AoM77PCHwZ2TmPdlRuoyDyXMUPJr6xTJhUrSpGSi+/KhO2o813i/3j7p/6bB+4YXbz0fZWShXtpv/uZv8sQTr+NjH/s37TD9y974Rq5ff5Qnn3ySa9euh0Qu8dz9oXxRFDSNZbVYcHT0IpPJAYOyjMNxoakqFrbBmsApN1VFtVgAYK1jUc2wWlM5hxchL/K22rD3nizLMNrgBBpnMXF6bpLBKfP/s/dmv7ak513/5x2qaq21pzP0cGzHdpx4IJYc+ecQy78fP0CxoiBHSUSUSMgR4gIhbkiEQMJMN1wkv38AKUhcREFEQmK6CAgFhQhiA8kFBCcKJMGQgaS7T3efYU9rrRre4XfxvO9bVWvvM9ju7t19zn6s9tl7r7Vq1apa9dTzfp/v8/2a4hQBiT1iNFVdYaylamqWe/t8YG8PfGAYerquY9hsiH2grhu01iwWK94c+pxO82nKJ1Us4tPJiUwYITyadzvFaafUr8JgmDx392a9e85BqH7Xle6TY7PZXPUuXMdbHI+vdLNyVFKpuvB4GohQ6TnlKclJovyayaGT2J1WK/EIill6ME1ZBYYgko19u0EpmfrSWtP3A1/72tfEKWK1T1UZfv8P/oCTkzOUUqw3G45u3OLo6FDEbYwqQwYPHtzHe0dlLbdv3cFYVWx/UOnm4iMOwTVBKF6b9ZrNZoMLkXq1xLkBNwziHDzR1o0xsqgbrNbEUi2LV1xtLS6E4jOnleCrItMbqaqaG0e36Luek4f38b5nvT4nxsjh0Q2CUgx9z95+I64W1uKCVJKF7kcgRk1I3N1paCgCOE9qcO02y6ane/pZy40twUTTG/N1wr0YTdNc4C8fHR1dNxyfsXg6Pd1Ef9oNY8woYj0b46UsWx9FYbj0okvJeT69lJ83memf0ZKMYLtJ91aabYr3ve9l7t17QBMsq1VFVdVJkUvT9y0PHzp0uvhXe3uF69o0DYvDGzRLQ9f19O02NaQi0XmaZkHXtsmFYmDotmzWZ7h2Sx8iZ6eWgGHRLNHGYGxFjNLc29vboxt6TDCpMWhKknIhFCEfrVWqeOVm1jRNgkE8Vls26y3gWa32UVGx3W5p25abN2+KcM9yRVVVDMmBOKZGmsyuxLHBNjv2+RTs2vSMrIrdplg5lxMI6AJmnzev5o/tJv3rgL/wF/4Ct27duurduI63OZ7KIy2EgGF0gZ1fdKpc1LmjDZBJvJddxLvvUV4iW9t5Rr5Qx82GiZuv1lpUvZLeQoYMTk5OuHPnJTablls3b3Pz5i1WeythFISArSoWTcPe3h7W2uLSsFgs8GFg2Hb4oRf34H6gqWtcP+B6kVKsjKXrO0Ln2Jyec/+NN6CyRKVolgsePLxPVdcsV3ulWWd0hbHJUDINTuRBkzyWodJQSYhRGm3pxlA3NYc3j+iHjg995CMcP3hA10klndXUTk9PuXXrFs1ihVeaqqrou4HgPdkhLZB1kMUGaLcRdhleW850OVezV6Sb4eXfH0gqZcFfoB5ex3U8j/F1eaRdXgUJ53Q0KExVrlJE5VGYOXv+EdtX06w6Yy2A6AnkikoT/agBYa2lri0y/aaLdToIv/bmrVt853d+Gu8DBwcHDN6z2WyKQIx3Dqs1N2/cwCea13a7IabEvj5fE2JIbr8yVmusxrmB6BzrkxOO799jvd0QNxFlLPViwc3FHhFwySI9fyYfI0PXE4wclxCC0Mby59VKlvlSHstxDJGqrlFaY6sK5wbqqiLGCtf3c4YCsL/aQwVN3weRULgkJ2olvGE53GOjTSt9oVolkmCPKUGXkmyn9N5ddoJ8VwBjCpvlWnfhOp7neCxlbDZZNMF1x6Vjvuh2qEcFz1WpUbODAe5UU5mXOzp27T5Hpt9Cea5MRGltSyUu8IArle6tW7eKa+/v/M7vcHJygvMy/JB5uXVdE0Kg6zrcMNC1Lev1Oe1mw+npKev1msVyya1bt1mslgAYq4lhQOFp2zUnx/eprOHo1k3qpmG7WbPdbNi2G9puy8nJcdJDsIBKQu8qcYBdabQR5HP4KMJCWklyz7Qz7xx1VbFoFgQfGJwrWhR5e3Vdp4ad5f0f+AAq8ZpzhCQ5JuyIUFTFUFIBh0togYLohKRWlrm+k+lApcqXaIrl5vOSvw4mjkJI1wn3Yty5c0f0QSbx5S9/+RrP3QmlFB/+8Ieveje+qXgqeOFRdKHLYdkJjhsTkyFq8gU7fV5OFrLtxB/NL9/ZeK6qClUtRoIXrdaqqnAJ0z042BdcdrFgs9ngQ2Bv74C+7/mD3/99Qow0TcO2adg/2Ge12kNrXRLg2dlp8VyrqopmuWRvtQKEprZZt0CgQtG3PeebtUAAVU29DHR9x/rsmOXeir69SWUrtts18hE99WoJRmOURilwrsd7nbjMRm48mU8bIcM3zjliFIF08Xyr8aGnaRYMwyCVeErAVV1xfHzCYrGg3W7RMbE1GFXXLmglKJUq3zhjGex2NadsiFlFHGECLhXthVm1PGGsXCeTeXzf930ft2/fnv3t+7//+0uv4joktNb8+T//5/mn//Sf8rWvfe2qd+cbisdXulAqx5wI5onzIgSRMUBVtnDx4tptyMTokWVrchTLOOKkmsqc3WzDHoEQPbmQq+umMA2UUty9e5e23aRmUsS5pEZWVUQf8Km6tEan6bGe4B2KiLWWGzdusre3x6pZlGpUEvOA7wdOj094cO+eCPsYS9UsWB0dYOqK9each/fvsT07JThxEj4+Pub+g/sE7xJP15BxF+9lYCJ6Pw4sKJko82mYIt/8soNEvVhQZ++2vYM0ZSeVfAzS5FwtVyP9LITZqZje00ryRBV4YV6NSqNM6fy68fljwp3/N23M5fHiXTjpWmnsOr6RsNbyoz/6o3zyk5+86l35huLxE2kxLfoTpkdqlJUJM5USqJLkOm2ujcVq6vw/sbLRKGWThoAuDIUYYkruZUsEYnleBIytODw8Yn//gPV6zenpKXVd0zQNdVXjXI9zQ0nmWimWqxV102CMTZxRjdaGGzdvcnBwQFVVLJcrFNC1W7puS9tvUBr8MLA+P+Phw/vYSjQZ6mbBYrXP4c2bLFYrtuszTo5PODs9ZX22pm23bNbnnJ0c03ctw+BR2qJ0jbGjlm8sCTak/+Is4S4SrWjoe6ytsHXFZrtls92UIY+qFtGfrm8vQkIxD1irgsPL6ZPjGvNSI8G8MeskQ3GyVFEVo9JHxzzBXtYfuK52JT7+8Y9zdHR01bvxro2///f//oXvSl3XfN/3fd8V7dE3F49PuiDjvJMLpEgD5ipH52bapJLJEG+k8Fthjvld8k6zChgkOVpb0dQLmmbJYrlgsVwIfLBcslgusZVlsVjifaDvB5bLZZl6y8MIuZLUWomLxP4exlppnDnHInmM2cpS14KrqXRD6fuOmCbPgg+C/XYdp6fH2MqwOthn7/CA1f4ey9Ue+/uHrPb2QUG72bA+PxNrdIT+1rUt52cndN16nHhLFXokluXkeIwmuHqUxX1VVdS1DHJYW7NYLgq1DEAlzDpj3Pn1+YRnmCGfIznPFFqgrCLiCBnkRpsA67OKuVSxOYFPb7yXQES7Nj/XAZ/+9KevqWKPiS996UvPFMXwySpj6d8Lo7qzzCrODuNjXjrwCJZbKuLJtqbYYUkoQSCDkiiyEEzil8YQJ0vSSNMsqJuaoW9pWxH4zhXucrlk/2CfqlokuUdJAgcHosi13qyJMXL71i2qSswe9/f3McZgrfiLnZ1tcL0rUo4KjR8GNpsN3TCwf3TEav+Aqm5QMWKNYZsgDdd3tNs1wR0WyCLGKEk8VesyPbYAbFk9KCgVK4wQjDGGxWJB37Y0TcPe3grnBvpty2LRcOfOHdrNFuccwTMmYDVhnMgan+yXlokL8r6T86vK/5UVh8pPniZKNXndDLoYmSdaKUI6b3Gy4plNtT3H8alPfYo7d+5c+Pvf/tt/my5ZM13HsxVPGAO+GGFe5qBEN5A4e0H2GkglkB7ZDPKyixqrOWnvNtucc0TnSiIwxuCCyDnuH+wRkl7B0dE+bhDr9eXeihtHR6z29qhsTdMsODg45PDwBoMb6AexvhFFLst2vUlQgzSinHOs1+ciEWmqcoPwzrHdbDk7O8NUNYvVPkpXVHWNTrxYU1uMKH/z8PiEoe8Yhp623bJa7UnOioF2u8YaK44VjcZakxJgSoxJ9MZ7h3MCNehUFW+Pj9lsNtS1UMaccxDTsfEOnxJkZhmMzZg4OXvFmOfCeZYEnel6U/A37V/qZRYq2WS7F2GE9JwQymhcTv5cNqTxnMVHPvIRbt68eeHv//Af/sNrbYpnNJ7YybiMtZDj0boJplRACj0Csikua75dtm2llNCcohiCayUc1hBkid11LTFG9vaEsdDUDdYahqGHVEkuVws+8C0f4ODgkM3mPNmZO46ODqmqivPzc0IMLJcN3vdst2tOT44FMzWGuqkSRCKTXH3XsdluqRYLbNOglRDjjBGcxdYLlvsH3HjpRfb2V7ihT+7ErXyuJFy+aBYYrRi6Fu96nPf4CD5VoKEkXU/fb1MjUPQbDg8FwmiaBQeHhyyXe/TdwMnpGT6ANkZGLHxIgxFpm1MYgBGzR4m2bq6GVSRp8O7QBseTUxJopguq3ceUQgzYBHfP/YC8ctm5S1/HJP7iX/yLnJ2dXfVuvKvih3/4h696F96yeKK0I4zKYJc9Nv39UXjerprC9DEZd00No0lmzs0klTMAuYEn5o7OOdq2S/snHfyDw0PquoLoabsWpRTvf//7iTHQdcKdhcjLL9/h6OgG5+fneO/Fqt172rZls1kXXDj/672InA9uYNO2MlFWWdFV0Iqu7TDa0DQ1xmgWqxV7+wfcun07qYu5lECFAaGN6Fb0fY9WMKSJNZkSk0ZWTrwg3VprTRHmOTw64sUXX2K5XLLYk4agrWqaxUKgEKtk8i5tS6CRnTwXshElBSvWKSHqyXl/ZOw06C5E+SoolJGhEibfER8DPOfshe/+7u/mYx/72IW//+Iv/mLx/rsOiX/1r/7VVe/CWxaPhRdmfM2dmEEDebmYlp7ja4R/q7BEFWZV0/Q9drbMvAIaW+cyGVbTOwdRYwwJ61zSLJbUVYXWhhADt2/f5KWX38frr9/j6Gifk5Nj9veP+OAHP4T3ntdfv0sIUUTAtWIYOqw1HBwciLYC4EOgrir6vi+6upvNhlVqvBljqOuGbrvFB4fSSyoridcNA6vDQ2KMDH3HMgoG2ywburYv1kLOiRllXdfi4GAMzAYVJGmGgmdL4rJVRbNYsjl+QIgCtaDEnHKxt8/Z2RnOOXwcG5mlaTbhX0dItusQE2ZbVhlpWk7kKCd2SqWpOj1NavaHsVEW0xuktB+i0LaNnmzx+YybN2+yv79/1btxHe9wPHE4Ig8OXBaScM3k592qVri3oxftWBHPx4lHCENcgSeVsoqIE6Khahq8dwzOIzzWQNtuWK8blqt9rK24efMmH/iWD/HGm28Qg+KD3/JBDg72OTy8SV01PHjwgOPjB9L1XyzZbluqSpwWVqs9aV4oTd2I8th51+G9Z7vdcu/ePUlK1hQ5xqAiWM3gHd4PLBciNmO0oWpqlIZ2s8VoK46/XY9RlmgMbugAzWIh2gnGGPwwCC3NDTjXC1PE6MIOEUZFLxWsrYhRs1ztE8j4b8/56Zq27ajrmq0fxnM5vYHq3BOL6IkzZUJzy/nKeLBC3CLyVFveZtZykEXIoxkJIaQJOC3fGJ2mDK/jOp63+LrhhQvLyWmf5QIdLMywv2lHfhz/VZdtakYviyh0Er0OIWCTSAyQYIGeN998k4PDQ1586Q7Hx8fcvHGT7/iO72C5XIoT8P4+bdtydnZCVVXE6PHeFRWzpqmxSc/WOdG07bqOthUfsvV6zWKxYG9/n2bRYK1Nx0ZgBYDBO4ahxzmRnazriqpecXh0E43Y9PR9jzGKthU7oMrYciz6fsAHx9D3DEOLcy1dt6FLiT8Ej1LCTMjH5uDggGZRc/PmLXxUrFb7LFcrPvihDxVZyd3zmQV2okoEwOnfE5TzaDrXfGDFZA2JGC+c493vjbBRMg1Ng3l+K93Pfe5z/PE//scv/P1P/+k/zauvvnoFe/Tei8PDQ/76X//rfPGLX7zqXfm64qmkHY0xM4xpxrGcYHvzJgnEVE4pRfLtImkfWFQRVpkkBa2ZdGvS/+vkG6ZwIRKCLxW2UoGmaagqw2c+8xn+5//8n2y3HX/iT/y/DMPAf/tvv8be3h4vvPACx8cnbDZnBD/gXURpabhZW0HUOOeLPq3WlpDkIrfbLdbaknSzzGJeescYscndF7IWAmkYQ7NYHRBcS99ucX1HZbTgyLUt7IzaGvq+o64bmZSLHq0iVV2hokabKk2lZVsfWC6XVFXF/TfvpXFoODy6ydC3uLDh4YP76QZl8VnXIVetKjXLpAtISPhuhhnUBZiIAjfkhlqMkagV0Xu00rMqN8NSF8TM86CF0sTwfGsw1HU9ajWn+PznP89//I//8ZpK94i4ffs29+/fL79nCuj+/j5/82/+TQB+/dd/nV/4hV+4ql18qnhipZspR7tiJmOMxpRTJ9v5hiIhyCjtcrlXpAhhrGjVTtWVOUmaiMmczpREjLUYK4lnb2+fT/9f38Wrr97l85//PEdHB3zlK1/m9dfvcnZ2ytnZKcPQ0/dS5Q5Dx/n5Gev1GefnpwxDR91YqsoW2ccQHN45hr7l+Fg81YS/azFGIU47kjBlAEHYFJJshWObxWfquqGqa6pFjVKRtt3Qdxva7Vlannu6rsf7gb7v8G5I4vAGzQKl5L5ojKGqa0Kq+nPTbLlcslgsUBhu37rFMAzs76/oupbbt1+UG5X3xCSOUxTJEObCyDMhTZklvDfBBZfxqyFh8bvP1yOumw0256+//IZ9HRJnZ2fXCfcxcXx8fOnflVIsFgsWiwWf/exn+fznP/8O79nXF0+odCXxxcnAwjSy+Iw2THjz82pXlqOZiaBp2xatNS+++KKYLCY7knzhjvyHtFGliVHUyrSJQEBj0Kbhox/7JC+99DIvvvgCIcCv/dqv8b73vY9PfOJjvP7669y4cYMXXniB1157hZPjh1SVTQk+d+zF7XcYWpp6T7ixMRKDJwbH2dmZ+JEtHKvVfoEU5GYUExvBMAw6JVmdml4iEWlSU6yqG5z3NCvF9vyc9XrN/uEhMXqc72lqg/dDSty5yaUIMVnaeNDaopVUSMLLlQO8Wq3o+47gPa+9/jp9L7S3O+/7ACfHD+l7R20rGAa882XgJFeukWnDNJa+V4zZsl2qa59cLfLr883FakNU4DNZW4GKQUaFy3dGp/9Xk2mbp/6OXsd1PHUopfiTf/JP0nUd/+k//aer3p1L4ymSLsnO5hI34BhRE5Km0gpiZjRMnycVUcjirsCDBw8YhoGbN2/SNA1nZ2d0XZvonQq08Eu1FbqTVqJWppTlgx/+CC++9C10g6dtt/zGb/wGL7xwixdffBGtNevNmoODA5bLpShwWRkVlipVF20HpQ2r1Yqzs7MJtYuE93refPNNtNYcHOyxWh2IELnRY0d/UvnLY6ZgmdmIUimpMAX3tcQI/bYleofzPbXWeNdjrU54rynbmVaFIfgkgDNgrRWTzvTY+fk5r736Clorlsslbatouy33H7zOpz/9nbz2yiu8+od/yGpvNdvnaUOTfIyBkNqjeQrNez/Xw0gDKQoKLS2ff7l57pIEL45gPM/Qwnd/93fzPd/zPbO/fe/3fi//5b/8lyvao2cv3s3fryeyF4DR+nynOy2jnI5i9xui4LIEiotY8hUL+LK0FVUxWYKfp8rPWsudO++nqmq22zXr9Tot3zWmshweHfLyy+/D6gUPjx/w6it/xJtvvsnNo1vsH+7hnKNplty8eZvjk3s09ZKDgwPeeOMNtIqsVktkYCI1l5SwAhaLBX0/sFmfs16fAxS2RgiBxWJBCLBNBpSr1aIcl5wcs/JX1sidjjhrbZOFUCM4aYCmNrTrjeDJQVFXFSDJPFPonHOSXGOWvtQJG7elkr5//z4PHz5ku1mzv7+H90PS6zXcu/cG+IHf+K//lT4EPvxt30oIgbuv3SV6uXlIc0slfY08jJIq3JClN3eseZQipGERtBLtjR3sV07y9Hs0jm6DKjzg8JzSFy5LCNewwvMTT3SOyEIxl1W6Y+WqC/1HESYdmSRLFUYPrfnrffq7SZXlGzjnMdqwv3/Ai7dfomkWtEPPyekJv/e/f5eDgyNOTk5BKZbLFWhJeKvVir29PTabDU295PDwkM1mw/7+Pn23nbxXWuoajTaiTWttLInWJ4aB4LF1uVFYa1ksFoXPn6128r/Tjn5+fNrJt7YWB2BT0w0ti8UC53rqusJHR/Qa5RzGVDPsUynSjc1jTSWuEyEweCfSk6sVxw/vS0Mt4eonJw/l3ChYLBfcuXmDu3fv0vc9e6s9bt+8BUTatmUYXJKslCGVupax5+B8YiSEcgPJ1XFO/MI4ywZDcUSV5vIM6d80dKwgKtGeUNo87uv3TEb+vkyj67rrpPsUsbe391TPy9fBuzWekHSnvmjj36cVr1KJoZCaYGXqSeUfdPrX72w7YYj5kk2dea0CSsF2e0rXrRFvryjaCNry5ut3CVFRL5b0/UCzkCGG09NTbt++zfn5hmVSIjs9PWWxWDD0qjS6Smc9fZ6+69PnCeWzWqvLTSbfeAR6cNT1ohyD3cSaT7T3HmNN6dBnyEAZjYoBWx0QfaR3fZobkHTVdRux9lFisImvAMGOYwwE67BVhTGWqlklBwhS5Wo5Pj6m77ecnj5kGDwRhY+BN954E9Q4On337mvjF1NpotIYrVHR49ww+1y7AzIxRoYg0M9M3jFl3Aud2ZhgqNJkE/gBsqvI8xNaa77ru77rgiThF7/4RX75l3/5ivbqvROnp6dPfI73nq985Sv85//8n9+BPfrG4ql4uo/TRki/zH8fn5X+FTrVo9jwBb9M1eiY6LL5pEmuDmds1hs2W3HotbZGF76sLthsVQlGrLWm62RsN/uQDcNAn1gKmX6V9gIgLfFNGpZYJcaCKHzlm820M6+1TmO6trg3gNwIQhpjFnUtRWUbrK3Q1qIrizKGyjYYXSUXCItNXmJ919K25wxDmyQpG+q6YdEsWSxW1HVD0yxQ2rJYrahszWq5hzGW5V7N//25/4eIZnCuMC/ycQJGNobVWKtAebSeYN6XhDFGVMNE6Yaox/MtGmyX9Me0QltN1BMMOURUjDNY4nmIj370o3z/93//Ve/GMxvDMPArv/Ir7/ob2FN7pD1qJFgET8aKUDGvAGUDyZtrh26mVC6JVbIFH1+r9Kg/kOlZbhiEp5te65yj24qc4csvv8zZ2Rl937NaLYlRlUTpvC/L6PL+ijIIkRtFeZ/rumK5XBSpx5yg8n+X32Ak8o1CdHoiLngCGqUtWlusbagr0QduGknCVdWwaPalUagNpqqoq0WBLbSWhF3ZJWDKPpls8a7Enj0PWJyvz/nqr/83nHcYay7ap4PQvZQqjAKVR4wjF9S/iuhRquRNvuHEHQw3ymcukEJK0D76kd1AStAB9HNU6BojI+a7cffuXc7Pz69gj95b8YlPfOKJz/md3/kdfumXfukd2JtvLp6sp1u63RdFxi9PPHFe0D5JGCVfrWhUGu0t1VBpuIRkuSP/CkVNkure3p5Yjfd9quYim806TXcNaKXQCuJ0fBVR4Kpri/MdRlfEqIqFe37WcrksTbIyfZUfzctvY6QZlSAKociNn0vFCEnsxlY6JW3NMAw0zUqaaSoPH2gEWha9BWNy7WgIUY6DweAze0AprFZYDfv7+2Il5D3HDx6y3W546cWXeP3114hBHJAzFzoCQYlGbvkcUY65Tk3G6enK8ICHbBIyDsDEicZxiJPni9GohmKAmc9pVKCsIfpnP+saY7hz5w537tzhB37gBy48/nf+zt/hF3/xF6+vLoLmAAAgAElEQVRgz95b8d//+3+/6l14y+KxSVcSoPw8nUjKUcY+L0ms42OxcDsLRXNadRUIQ0RetJaZfJ27MkoTAlKpescQInXCf21Khi+88IKwFLThxo0jXrv7Ci/cfoG+F3zSpgSWBz26rhOLnv190ZbwgUVTzwTSjTFst9sCTWRmQZ5Gy59D68Rd1RotpR8xkmx3As5FlBpQ1sggRrXAJmdg0nLeeY9O7ITgO2FEKKFgKUySRRwnyvKx01oTgysQR1VXDMOAtRV1mnjzLqAjpUKPId0MJvoKGZ8lJ0Q1PzfyHEVAuLomjiuRGaNFCcavVJKRLEczn3dkVZRf8+5l9XzTobXmwx/+MIeHh/zZP/tnL33O1772NV577bV3eM/ee/E93/M9T6SAbbdb3nzzzXdoj765eILK2IjpZuvw3YsxL1fLdaemiEWufJh15HdjOoU2ymrP8eTgxZpcGaF6yQiuJL/tdpsaYBVd3+H9wHqTZBuNpa4qrJVBhTx1ljFYwY4pVawkVoUxkqSqqpoNRUDmLfvU+Bs/r1IarQx5xDmEfAyFilWlyboQDcZYXBppBuj7NlXUPnm2SeNJG4MKAe+zaaTCe9A6D5xk2yRF3TR0fZ+aYSrdiLTQ9jK0k0evJ+cwU7es0gIBkbnBYYSWEBKg1pqYmnRT7HeK75cR4vG0FmaDQBqzYvmZC6UUn/rUpx6ZbAF+67d+iy996Uvv+pHVd0P8m3/zbx4vMwq8+uqrfPnLX36H9uibi6fSXpAL9uLfS5Wal9RjriRPbeXRUKESTZafaroMlxdKZRzK71oblDEMzuFCxHshJnknPmX7B4cYYzg5OUk2PTXnZ2sqW+OdxzsnoHUlPmmRkHRWzGiAiUAPfd+VBJaHD7Km7kyzQElVrrXADRlakPJ2Qp1TeRIv3TSCx3stFWIwuDQ+ncdzMydXRN8pmHMkpPeUm0yMuZmXWldKqti6rtlsNsQYOT05FQaFVrzw0h3uvvqKrDjy2G46FzFObqz5TOQBByhiRTKllqCHGNHGUKx31CSB56fnfJuq56JopijPlZe++/V0X375Zd7//vd/Xa/RWl8KJUzjn//zf86//tf/+pvZtet4j8YThiNynpRL8mITbJZn03JVzRJvAg5LNRxL4lUo7WevHv/VoCxKW1BKBFsSrmytJQJt20IUpaG+79Fas7+/z/HDh+zvHTEMLlWsstzVCQKQ6z7pDyhdEqiI39QFRpEQ7moWOo9RxoSNluQpn8Oj4oj1yrCEA0z5TCF4lI+4GInGE4JLmK0VuyGVOMMKsYFPNwOtkrbujMlhSxWulLmEdqXwrqdrN1hruHnzFm/cfZ0wdOWkqnyuUqbNMEMkopUmxCBTZUoxMrEneEFewZBPd77pyF8zdkw65yF9LYQqloeL391x+/ZtPv7xj/Nt3/ZtfPSjH31Lt/3Vr371XTui+m6LH//xHy8rzWclnurTzIgIOzSyIlJTRklVWWLmCxCmEMN0y5JU5mFGSlYyM5ySnYP3EGMRFs8VqzABLFVdi+pXlMpsajeklUmVNLNxW5mQg8WiSZivDC9EItt2TWUXSdhGKFMxVbVaS6soxlBUxmLUaZQ4wxUKCFKpJn3hiKdSNWCK0lRIFb5ODbsQAyZDFUqOdD7uu8v6jFWfn5/Ttl061oIte+cTde0SvD2fx8k5CcnRoSADSqARM95JS8rNxesE1Gc3NJN8nBL9u3lE8+joiM985jO89NJL/LE/9sfe8u1/9atf5W/9rb/Fv/23//Yt3/azGD/5kz/5/CXdKY67SxvLF7zRkjylATYmXZUaK7vKZNJUc8Swu7xMfF90avUwuZDlyvXOoyv5PVe8OXEppdJwgUATVbK4yfsvS+6RY5uTZX48J845JUymwkTPVqGC/F1cbl06hJkyp0rDzftBKusoeKgPHqMU2oiimc7L+DzpZUZjTqXAKBn91aYiD5rIe3icU+Uz5+PqnOPk5JgbR4cMwzhdd36+LjegPEV2MeVN3CJ8HLm4TJtsF74Z5dSMcEK8JPHKmPHkvvGujYODA/7Mn/kzfMd3fMfbsv3f/M3f5G/8jb/Bv/t3/+5t2f51vDfiCW7AYzdfqTj5mUSkr0qzR2tN9IHImKBHrQXwycGg0M3QaUYt6TSki9UHBUZJlacNcdoEUhRjRVAYrdlutywWYrOe6V15ui1f5NrkijRhoelGksd9cxIeBWfEF622Fd4FgvEsl8s0KisfyCuP8mCK1fxUR9ajtEJHmRizuhpZGdpOxghiElLXiQOrCGkJnsVyYpBxWdG58HivChaqtFTc3nliVHRDz+///v+m71uGYSBG2Gw2SSGMGaaaul1yvlIlGnL2nDTBVPr5suq03EbV5Bcl3Ahyg7Vk23mlDe+OitcYww/90A8BIhV6mWfZWxG//du/zU/8xE/wH/7Df3hbtn8d7514AqZrRngg+FQNupRUDdpYtNJpNFWL/1XiamqtMdaQSfg+VAmXFLUsotiUh9xsyQleifpXdj3IYjuJb4ROFaH3oraVNRNGjYSsY1ulqjkJ7UwaXLkrnxkIU6ihaRoGJ/hnCAGrKxRSURtjMEoaXpmOZerJYIiSilZrlexodBrAcCyXMj7snYh+ayI+DAkeMYA8N+pxrivjwzatJJQesfX8GVTi7QYvxpZvvP6aOB+vT8VQ0w3F7DJXy5FxODs3u0qDbQrdppj+nif5ynZ08f0pGHBUSTQnJfOo9KzIfTck2x/7sR8DZP+//du//W17n1dffZW//Jf/Mvfv3+dXf/VX37b3eRbjH//jf/xUegv379/n3//7f/8O7NFbE4+HF7QWo8QYaZLweIwVSkuVaZKgeFOL/XlwQ9FZlZfLpa21iJ24YUiDDrKs72NLdBGUSU22IAnX2FJ9OicXtEGWvLmhVuxrokpVnQi4HBwc0XU9IEI9MTiWxqSmmRIWwyRpFUw10ciGYZCGktZ4F6gXkgxRitXekqF3BV+Oei7qHmJI2mqjgaQk1ZFXq7VIODZNVfYpy0IWCCStHASiiKKrG03SEbYzKh/pszx8+JA37r5Gu9nygQ98gLuv/SGKSPChVPZT1ohSKpssj0kwc7nY+XuMJdlmGGImPTlhh43pVJK8RuEnsMP0u3EZffCdireros1xfn7OF77wBdq2vZZs/Abje7/3e58Kz91ut7zyyivvwB69NfHYT9QslmUM11pL0yxKkybTnJaLFcbK8nnoOpTKRoiC5+bXa22wVipS55ws5a0ngIjLBEAZrK1K0p1rvkpCU0qjjMZoK64QvePoxmFaFU8qTu+RnrvCuYAx8ybgVDth1KwVStlqtaJt28Ttlb+bSnQctJaKeIRO4phQ1ahrMCYoyDbuWjUCE0SXYBhpsAFlGi4nspyI0ZNBgrT0F5hiFB53zjEMXSLa++Kh5mKYYaxj00tWJShp3GWebqag7SbDSMLqQyysjby9AiHE8W+pvSrHbuc7NUvW77H40pe+9NTTY845fvM3f/Nt3qNnN37+53+eF1544ap3422JxybdxWKVKhxJVHurQ5TR9P0gOKqtqCqZrhqGDj9xFciJaJq0VdIIEFeEQJ8q1BiDLEG1wdg6UaJG80qljDSUoheFqxjRwXN8/IAbN6R67bqOumnwfqBttzJooFOVHDxT94ssdKO0NL5UWgtn+tVms8Y7UI3Cx2FC3fLivpAoZ7IUlypYoIDEUggK2WhM+OuYTPu+p26EN2xtVfYnJ1BRFItpAANU1BirRv4uAa2yrbpO22x5/Y3XOT87pW23/J//83+obA0uYqtK6u5cnWZiX2JAlCnDafItjBNhLeSGZjQjVquUIvrEw9aZvTLHbjMzImPQu4M17/b4uZ/7Of7e3/t75fe7d++yXq+vboeeo/jkJz/5zLEWcjz2Uy2XS/KwgFKKw4NbRCVJtKkXaTy3pe86urbF9X1JuN772VBB3/flgnPO0fWtDDD4gCdgqopFZYu7bJleSktyIeSDDWk5bg1939O2W7quZblc0XXdZOmLiMwkSKFoFZQTGUt1nEdjgaRnq0SHd2jlcRXHVXfRcJDps0zfGqGECUVNi9tFDGCsFYWxBLlUlSH4iItuhjNPk5IxtgxfqFRJG20wWYgdcSzetlvW61OsFfra2dkZm03LaikOFmIh5GbbLnDDJRXpjFIGIwySjlJZgUg2H8eBpX4v28zbysdnl274bo5/+S//JX/lr/yVp5ITvI7r+HriiY00rTTBC1vBucBi1RTqUdttOT87ZWjbZI8ulKvMq50ul/N/4gYx4PxA5wL4AEZL0ymA9lJJxhiSfsFUONtDWnavVqtSdWw2G5bLParkHyZVYkCnxpTCoHXEWE3Eo5RGG0lgMvXlsbbGGltW4y64NCac9A5iLPujNZgyLBtnnxFGoeqmaVBKU1V1GR02JunsGktVGZzrC5QgTcFR21cp8VzLjTaUJmKISpXz4r3nj/7oD/ja//otTk8fJAt4xwsv3GZ99jDhsYknEsLspgCZjSYwSIYJ5glSqumsEibNO+RYkGAHGV8bhy6g8HoVFyGGd3P86q/+Kl/4whfo+774913HOxtf+cpX+MhHPnLVu/G2xeNFzENkSB32EAKb7RpSswcF52cndNs1wUtzKfuGwWg/ki/g3OyS57nUsJJlftYEyEnJpySPUsnZQZbjVWXRyDK4rutU6bZs1mcslnvcSEk3hEBVG2LUaakuU1beBXQSvgkeFDFNrJmUcGOBDlQAH32BIiBV30aSXkxW60mRoHzOXJnnat/asUGW4RZTWSHKaYWthepGOXapiVcwXnlfwboztU6OwRAC63VbVhTHxyf4oaPvWz7wgQ+x3pwx+A5jNM6N1X6BGdLyP+a8OaMppPM46ZLlSbOoYpnumyLFOXErFF6PThKPGvd9N1S8p6envPzyy+X3EAJ931/hHl3H4eHhE7UWcty7d4+f/dmffXt36C2OJ6qMTW3VjXFs23VphHXtluj6kkx3/4V54yQn5ayhMEqrJPzQqEnCmi+3ReYwYpcVzvmSmEIYWK/X3Lw9JntjVREfN0oXKUStTRrkGO10ckWZbRBiGiQgOJTJzTypUuu6JtPlAhGrTRK4EYaCnuCkeSgjwyy58RZCwE6S85SxMI9cPYveQggDKlRp+EKVZb4bBn77t34L73peeulF7r/5Ol235cHxCV3vCGFTqvCL75EpXZNfIAmMJ9bJDoWsnLFMQSs/z3Z9Qj17dGK96mZa13XcunVrpt52He+tyNfYeykem3Tbti14ozjr9gxeaGHr9ZowOHTiHeVKbppcpxfVMAzzx9Plm5/T+cTfRWOtkRFbNUo4hpgTbSz7lHHUvK/OSTWc8cuc7CUBz5fVOTJHN8SRPaCVhoShajsKhiulS7Up+gtg7GRkdgIv5KW8mUyaxRjF6DK5SIyVsSuVaH4u5NcmF97iQBFxLmlBOM9me85yteC117a8cfcu280xMSoePnzIzaN9Th4+RBNnDsOzCnM62FD+pOYshUIpU2MFPPmsOeL0+VGw65hm20b22SX7cIXxXrtgn/X4er8XV33j/kbisUk3c2611mw2G/b29ooW7TD0JemOUoZjdbubdNEyOeW8S+vQiI/j80kNr+12k/Rga6oq45lgtHB5jRl5rU0jWgmr1arspw8OQ03XdVKdJoaA8HHjbJmdYZMYI1VlisKW0qokzUDAKpu2PxEXLw3GEcfM2516pSnl0/HxkMTLbdXgXJhM0TUMoS0OwCN/Nw1vqPw+JHzb4J3DDT1vvPEGxw8fcL5eMyRRm5BGlg8ODjg9OcEkCp1CuLlx9r0es25JoBERGNcKJtS9qUg5TBgRatxWwYwJAtUERSYEj6sWM/u+XMd15PjlX/5lvvM7v/OpnntycsI/+Af/4G3eo7c+nph0R1GYyHq9JipwXQ8+Qgz4MB0Rlpgm3dzF98Hjoy8i2UZprJfpJY94io2DFSYlkNGxoW4W+MyMSE2cqqqSq66jH1q27bowLnLzrV40GG0YBldoYzlp5GQiyVIwWlk1G4wWOlRtFhgzbk/2XQY4gFl1ugtdymcJs5vPFIKY4t/zYYE0WJDxZBXQqsLoCq00LgZUUkZ7cO8ev/t7X8O5jhhcqtwie8s9GWCZ6Olm+CSiRtnGaZmbBymUAju36JlWIOMqYmy2kbgNcqMw5bNPj8mURnidcK/jm433Kvb+RI+03JgKIbBpt5L4gicMfcJUA8MwJIL+QN/3M6qY1rpUtCbRvjKOCRQa0m5kTNQ5wTvrqsGY0QDSWkuXtBO893TbLX4Y9zVb7Ii9tTj55iQ7tUzP+yVNIo3RaXzYZJcILmmUpemwxFKw1mCMsA4iYVbxkz5lHpvt3YCxiaY1qYjHCnxKQ5Oq2pgkS6k0QQkLI/hA27dEHB/+4IeSoE36fCj29le07aYk94LnJjrtLlZbHhonhss5nC/5VGo2jsMl0y1pPSujL0Q+P/mYX8d1fCOx2Wz46Z/+6avejW8oHlvpTpOnCGzD4HogFs+rXM1OK5cpPul3Lu1KKVwIKKMF7YuKmB0K0oUYkviLtVXCd6Vayz/rhB/v7e1BSihKwXa7pl40LFcrSXhBNBhICHJlG6qqLhXtbnNpmoxjCCirMFoq2KlLrlj0qKQDMVanamzfp+eJ/GNIVbypJFG1bYs1NSHkCTaNikJCCzEI/9eYQsKCPMaMTMQFGTler9e0Xct6vZaJwXpB13swcPf11znaX+KDK/BPpoddaHwxoYLFzCbJgw27zx0dK6afe16l50GJcdsw3oTkmL+3BiWu4+2PF198kaZprno33vZ4Inuh0LxiwGqD0rEsOaedwylXNVeySk2XseC8p5o0VFARlcS7dbrYXeKU5qVofg9JhmMzKPuCKaVoEqvAaE3ftvTLJRqFXS4haSFoxaQhBhBKkoeRWzv6wEmiyxQzrUXCMnfvVdI7zLmm0Kmi2P/IdJk02xSCjeooAuhA4h2LKLnSiqh9SorJATg19ApXN400kya/3CBTeGenp2kYYsN2e04IjuVqn6aSasCYCoJoEKNU0iiW/cv7vRtCC5ucp/S8keebjUpj+nm6LUm6+eY15Wzn7WVq3OOYDdfx/MXP/MzP8NnPfvaJz4sxcv/+/Xdgj96eeKo5O9EkULjgMZc4uE4x0pwkC3bpQ1GjMlompgyREBXRRbwaCDEWmEFrjV5UEwaAwg0DKEVlbXGZresaGEdoMxcYJRoQlR6FbHIDLEwU0GJEFNKS/i2MFXpOwColugw9yJI6jNBDHK3lheObDBuD0Lycd2ijMNoSvaf3W/RihVYU9+KyKkiwQowRTfZaE682KbUF8ohKE5XCOc+DBw84Pz9ls1nTrjdp2V7Rth3gUMqyXC7YbjfEpBlRKsw4nrvppFhRqpw8nn3eBFZQ5dzIjXYc5BhDiQW9Gt8v35TltRFFvvldx3V8fTEMAz/zMz9z1bvxDcdjMd3CZU3VavbImtLCdiuanIAzTjnl6YKsWr0S5oJQsGR2KYjdQnlt13W4pFrmvMg3RkZcVTzRGqqqoqrrgvNqBdE76rqacHGz2tlIG5PnVzO+7PTnDD2MTIeKyMj/FR1aScsZ+5Zpu4RVRw/IIEgIAecdIbr0uXpCGGbDJMLSEI3igJIkbITJoFPSJVW/MSj63nF6+hDneurKpBHgvHy3AkokxbY8fDK9OV5+whOkMAHaR/hFlXN9MZIDcpxs+3EJNc7hhuu4jifF7/7u75aff+/3fu8K9+Sbj6ewYB+XzVopotYi0ZiSrN+hiWm1c3HqPHU2UsNgXHb74GfPn8IV2cFXoYRu5jxNU5eleU6eMS3bMycWPNvNGUbP3XyzpKQxVRmvVSpeaOyMjIZcCUrpZyYd/5hGYjPXWG4aEJWsCrQWkXbBUjXaJEdlBohirjltmgmvNULSziU11STZQRI6SEMHga5r6botp2enbLZbnOvT8XMs6pqhFyZB27azm+PuzzlmegmTJtoI7SQKWP5MagojpNfJpEQ5RvIe0ogkTvnVRmQ5r0vd60jx2c9+9rEGoD/3cz/Hj/7ojxJC4F/8i3/xDu7ZWx9PhBfy8jJ7g+Vkm8d+fQjlIs1WPWqaeLVMODlyQ250Fg4TXDFfkDFG0RYQaTMAcW9QA0orujYwJDx3GIZSKeeluFKKdtvhHcSouHHjBsMgqmhSueaKd9xHredNtDHpSioKzhO1ScI5whfOOgS5ioRI9IGAwADEiAqBaET7oU5Vq9Kyn95FVKqE5eaS3jvhpjondg2kalcafCKEfn5+xnazwRrLomnw3YLg13IjspZNDKBgGKY+dWOSLW2vmAQwd5JwjnmyHv+286zJ83e/QOPUmtj2jDe267iOHD/xEz/BZz7zmcc+55/9s3/2Du3N2xtP4OmKoHdOVpcNPUi1ly7s1DjTBd9Ltt9KFfW/GKNYo++MpE6nuZSSytZrT0iuO1MR7TxlZq3FDQNVVRVBGUneUi33naHrmqJ/kFONuFfoCSNh5BNnSlkZB0b0GmIIIpgTYqr8I1GPNurRx8Q+iOhAafpZOyYXrSx57na0E4r4IEI3UnmPZpxJP34qrUMEvHOcnh5z796brM/P2W625RhmWCSvLpQSuGEYss7xpBJFGphKdi4J3swbbNMG6fRcZdhmmqxLxcskDavMTyuzaeU9ruM6niZ+5Vd+5ZmCoh5PGQsuVZ9j91mFOKl8VCE1lYs5xskVF8dEO2vcCIxg9UgRm17YGQNVg/ivmdTI2eXf5tfUdT2hrmXtXMvgOrbtOYtFU4YtYEyu+b1y9VsaaCnxkit3rUqlWZbVO6R/ee95VSlV+LzyVyqmceWa4CPGkMwg842LfETlfYoeLzDBzrfbjYj4BBEwd8N4PLI/mlDFZB9nlWXqo+V8SLLXUXGuhTFNqLsCJLvVc3n+zt/k7caG2wjXXMd1PF380i/90lXvwlsaT5B2lAvLOSecUa0KtWv+XxDql9bFAma8MyXKWYiluhXeLeKppudL2FzReudQKvF6PUVwPCfDTP8yZoo7KqwVlkHeVtd2bDZrQojs7e2JbxtJGMfM8c2pHu68iShUKykNJTFqrYh+PEa7komSrHWBHxRZOD0zJQaMqWYTf9mE0xgx1yw3ohjF6CEdy2EY6LoWowX3ripL8AMhyGfZbrcp6Y6NyQvnNv9/SuYlWT4COtjFgS9WHok+dwlqMJq1K9HQuIYYrmMSf+7P/bmnooo9K/HEiTSVOuZGJ+PJ3S54FAghl07zikglzuqksRaTdY8xoMZt7V6A+X2DD2Ln4+V9gvPEEEQDwVY0zVI+iL5I/yKCHxzn5+dst2sZRU6cY1QSOlcXE8CU3qRUEg3XhsjocpwpXbs4cPn8ilGAXAk9Le5gmrkhaLQkIx9EyyIGx8wFmXyPkkbgen3OvXtv8uDBAzbn50lnQmhqxlRJXMiQ51V24aD8vyymE1DS9Ns5B7kqlWNzCeaboJIYxp+ZLnTSL7m/FkIguzLv7td1PL/xp/7Un+LjH//4pY/9/M///DM3Mv54Pd04TmypEB/JAippIY7KYXMMlgsJKoQgS3Y9shYyTzWzJoTDKhe8jiLyErxHWcNiuUdV1QVayCPJMfrCVogxEpwnmAHvHJv1uWCcWmG1po8ypFDX9axSnVbdWV0sAymSXE3SfpkLtcOIcecpu1xRDsOAyZU68yQ/DAO2rgje4YlobREt4Oy6m5b9qRoWl1+H0RqrBW/OfN8Mj+x+UXex2WKhk28DITXKcpKcv7rgw9Pvxiyj5m9HlAYmCeKPISalsVJbA3NB9eu4jkfF//gf/+OZuzk/9ls/nZOHeVVYkg2JexsCzvuC3e0ut8fJLj0mhMwkCHOn2UxVyu+ldSQQiijO0Pes1+dsNhuc9wzDUCrHTCHTWtO2WzCKGDxu6Nhu1mzOzujbrQxcMA5XiHLaUCzdc0w/czaqLDeYONfyLF+OKDhmtkXPjT/nhKcrzx3lLmFUAYuJdTBtR+WkmG8EOcEKLziUzzGd/BpvbikJMk/08+ZYypAJaph+limMNMVxM6/64vMmhygoFAZTblnMtnXVF1Nd1/zCL/zCle7D8x5/6S/9JX74h3/4qnfjHY0nVroZL9WMF/Zc2FwnHzIZYw1AXtfmJBt9kKmznFzjmKg1Ug35CW+zJPQQiEooWFqP2gAqwtD3uKbn/OyMqqpomiZVeSJAk5tuef9UFMnDfhC3iawSpgBV18lGR7DpfKMROABiCIR8I/FBluI+zNwgpseMGIg+EI1BVxUQcG6Qql2NDhuZVWBMOkZKxoLHZJablULZ8wH63nH/zTd45ZU/5OTkhK5tZ8m2bVupWoGo50n2URjqpH1Wylx5rr7wmnxsghdjzHldnGGkkSEhIkDvzlBK8bnPfe6qd+O5jg9/+MO8733vu/Sxf/SP/tF7VknscfFUY8C5+jNaEtg00eRV5tSSPA8FVFqmobQVz7OinoUk2spYoREZjYpjMs+DCdK3ktcMw4BJtjohBIIbkhatjPv2fY8xhnbbc+PmIbYSLNXkJX5K4sPQs9mC94H9fWEuCLYrSTuXanmirrIZ8nB41wt7IgYRMS9shkllGDwKuVkExPqlrmt88MSQKt6hY7FaopTgsN4HqqopVfcYU0hGfhcjyjXWalaLhnZ9MpNKDOlGBnJzQk0ToTAi5HBcTMCip5AVziJlYCPF9GYkzC+xuR9fHwqUNN/uHFO+jut4mrh3796Vr4bejngsvDBd7oNUplN61xSDhfnFpbXwTYfg6ZNweaFWAS4GOpcm23aYA5LwxElCKmBKdZWX5ArYbrc8ePAApVTBdutazCCNzaaTwhjINjd4TxiGJPfo6fuuNK2ytY5PkEX+fAVHzT5vflwih0ugEcFAR1aDbDNpBaek5PpBlNvUyJSY4sJqJ0EqIjF6Qow8eHCfN16/y4oF7pEAABfLSURBVMOHD4oG8Qw6UNIUm9K/dmP2XuW1edhD9j8yaeYlHCl/9lGkYQ5VTPHwR73vSLF7thok13EdTxNP7GQ86sIYOZcXn1eUpVKjSilVcNecjI3WwmBgTDpT/uzYkIoMSSfXJOucEAJD0nWo69Fp11pLiI7tdk0IAWuMWJAbgzImJV+NSe+VtYLbtqVtN3SdjNO6VNECBWKok+XPtBE1vUlcgBjSeHFmdNRVLZq3UyujiQZBfn0W49k9HjHKUMfp6Rk+RFZ7eyyXTXHSKMmMxHQY228XqvHp3y5EzDoKkRhdek2uYC1S4hpg1NRNWyRLSE6hjGnynSbcx+7DdVzHMxyPhRf6fkw+hkklFSf8Vi86uzFNUpVkka5vHUkC3ONAxW6SkYwSMUolDFe4uJVOFjqATTSzIrQTIqEfePjwIV3XcXBwwIMHD7hz5w7eB4ZedGSXqxqFcHRjdETf4V1g6DYENwC+dP1BYIymadBKsVqtypK67Qfquk5Y8agIJjcBjx96gUMSe0BrK+wMxko5OyqoZPeTKWWiBaFnCWlspuXkpIQu5zqiCxw/PObs/AzXD5fitVOWQN6GvJdJf5P0LBW5mr+w3BBsoiDIAzH61OiLKKoEL+QKfdJES9+RvGnB+idcsjj+/Tqu47L46Z/+ac7Pz696N96WeGKlm7v6OSEUFa2kvQAZe02sg5CGPbPVeRbFKd300VAy05u0McVpd+QaRZx3xTIoV8sw57gSYxE+Pjw8JITASy+9xGq54uDgoFSLzrmUO8SNoa4NdZ2tc7wkTu8ozZ8YC5adm3JTKlt+zPvk+4YvVvQyykuBKvLnNslOHkhUudFfLn+mC5NfWqURXZUm0dacnDxktVywWi7LhN6jsK/dY533O2Zq1yQylEI5qyoTNUbIAFLydexaEU23k7cQYywmltPPlLd11XF0dMQrr7xy1bvxXMZf+2t/jb/7d//upY/tsoiepXhspZs1a3fdfedjuwkGmDRRIlGW/8aksftISBoJuVqFOZ44JmOpfDPbAVRiGxgRZ5ks45VSoDTHx8elKj07O8N7z97eHraqODw8YLW3j9GiaBYiKCsNOq1HxbJhGKibirqp0Uoz+AHjNFVV4ZxjsVjMKG9T006jNVGLUHpOJN45TLIcyvi3jP9WZd8lkXmqav68LHmptfCYpS6NuADHJ6ccP7zPyfExm/V5Gnu+DEYYMeEiKD95X5mQ04lbPceOp7zbC0k1RlAmNd0myT41+ohxZz92K1qVHJ31haR/VXGZNf11vP0xhc+ep3iiXY+1VsTDMwU1jlq6OWR1OS4fY4iz5lIMgYAkIs/oBlsOeGrUKBK0kA0qE91MhdQpVzI5lceBvfeEvidaS7ttaWxFvVwUr7Z60WCsplk01HXNMPQQhcGgolTnwXkqU2GU3DjcEGgahQkKFaDvWlRKmNm3rVTxMWCNxWCIupJqHhk4sJVJ1WtFxjtJn322vlDJ062p03JcbiSCGVuyP9vgA922pV23iC6mQAO5kTfn3TKl+V5gWRS8PPrJcAOIcuM4WDJ9/mSH02vkDXRa3Qi4n1gNZLqb/CkoRcQToxmNLssX5zqu4/mKJ1LGykU9oXPljvwUp0XPmQ7l9anJlJe5l97ZlBK9WT+3dpHtSSU5nbbKdC5JvAONEW7rMAwc3rwBStH1PYvBcX62QSvLchlZLhf0w1b2RY8OZN556rpKswFKqGnW4tPYqoJCT1OFFaDKaG9QoO1kmZ8wzqx+lqlfGU/NMEKGEsTUMmkDAzZVuTpR9EKqiLt+w5v3XuXNe3fpurZUlVPcFnLzL+lbqDF55pg2QDMmq5QSuUnlLz2PuxXv7vvups8Yx39DHvjYqYKfxyrnOq7jsUk3V1DOOawaO/X5sYLxpQsqc1fzxTjt6pvEYphRm8qVmRotWlHpaqbZSxw1fHPSz9brQglzJVGHELj3+huYquJbPvgt5b3y8tEHT2Vr2aZ3WG0gBBSB4D06TZz1bgAtUMd0Ce2cw1hhQRC9VOWAqeSzEaWaLzzjfNNImCow255W6XUqlONpzZx+ppTo0BJigl3EYn33OM4nANPgQi41HxcqFtx2mgMvVM6XvTRVzGEyVDGNGBVBJV3gCYQRd24W13Ed08jC+89qPLHSLS4Nmf40wTWL1U5qvgjKMGoWWGsLFDFdAudqdU4PU3jnxtHgSWTsNP+9bdsy7ut9ICBYad/37O/vs1gsePDmPTbbLbdu3abrOqqqoq5qQPRvta2yYBh91+P8AN5QxYgxmkDAMGruFhqcA2NlSe21MB90mpiLIaISBCGvE+cKo8VCPUxWCtMIIaDCRfeK2c9RxNz39g5YLfc40w+k3ziR2mQ8C4jnzm61mhPrhBNM1kOOxFTV71bF85OBcK6z4kaBGiZPEDpLuhEJDCFiN1Kx757/67iOafzsz/4sx8fHV70bb1s8Udpx2kTTWi7+gvcRJ3ieQJVKKUic2DgZHJCl+nxZmilX3nsqbfBx1KQtlZtKTbUY0BGMGuldMUaMliV8cB5bG9Zn5yilWB7ss1zusVwu2d/fZ7VaASJWUzUkviwQA4FApS1Vaor5EGlqgQUyHlsbNUnAfsbeIAjEkI/ZWCFTFNiCD9hFjQKMrtBmdCCOMaLSjUulRlqM0kDTSqb5usFxenZGPwyFTiZV7xjzBCkVr1jsRGLIlfBIQcvPUgWnZTdPT7aWRXdy3k2NOBKrYQo15WeHSYMvitFn9B5HhiUe8+W7jut4RuOpxoBzxEnVAjKhlnm0avKcDEnkJLtbLeUqJ1fR1hiIYKtKSP15+Z2w41lTJ7ntzmhj6bmDG6hsxXa7Zbm/lwYnLF3XYRItzdg8iGHEgiiI71re5yZG6qpCRUVVVzMsWpk0zlwSDpAbUpMEPcO+iYnXqsp+5sRUKHN6rKgLLKGnGUnR9x3n63OOHz4UoR83p1zNj3EesMjDHHN2Q9rrscqdkGZH7dtd1oJQvabnIjt05BXO+Nxc4Y7fhxjBI5OJwYufnPc773Edz0289NJLfOu3futV78aVxBONKedDAJPGSfqbCz7RjhRRjdKOojk7qoWFGAs0UbiquxhvCAVeyO8xhSVkFHjElGOMLJdLcZFQDkLEh6GIi6/Xa5qm4caNw/L6uqqIhJwiISiikc9a14tidZNx4vy6qCTpWJMw4WLnniABpQmzJCJ8Y2N0EW83WQlMx/KzncARMxyX8dhkXnDfinD5smk41YY+XLL8vxBjAoRJxQrlp5gw2RHOGMkoM2y3NMfEmWNc8YwpekzK4++7K6MYAspHuSFdx3MZP/iDP8iP//iPX/VuXEk8NuluNltWq+XkootF6FolUqp08JOEoQJSxZZJ8SqzBCbVXybh65Jwk+hMqu6CD0lHl1IhZqzYJlGa3FhrmkZszr28f27eCU57irWGo6MDDg4OUnKzaE0RuvEDbLctdd1QN4ty01BKJxUxuXHYuhIxd2OIQQRwMm5rTJPobE4qx2z/Yyx6MhABYK28HpjdWMpxyrZABWaIeO84Pzvl3r03OD05Tk4Y0lCbcnRH6CCvSHIVO6k8yzjYxWp2WsWSt2JUonmNkIRKVDXUxGi0LHXGZB1KlRuLxkaGZmKInJ6ePe7rdx3X8UzGYyfSNtt2VnUKSpi61aUiS3P+Ol/IkyoxbWe3CsqCNdGLBGJwTiriCATx69IoTE7ocT4+HGOk73u895ydneGcR2mD81481Yxh6Dq0gu1mzenJCZv1Gu9DqrQrERS3lqgUtlpSNytsVZfPpfWYlPKSP0RJHBlysDYPMBiUNpiqwiatByEPmFLxTZtnGZkYfdmsOFGUW4ws95XQQhj6nuMH93lw/w0ePLjHdnOOH/oR1silpijdSFJPLg4on9gJeYAlZDzgQpKdRhmEAYKKBKUIUf6LQRed3myWqQLgk95v0sbIfOm+7+m6jq5t6dqOdrtlu91y7/7DJ3w935lYrVZ88YtfvOrduI7nJB5b6X7iE5/g+OH9GQyg8wRaFtWOI+0nZgghYZUzLHZn29poSRAxouKoQ1AadSX5afROgijygsxdguu6TsLenrZtaVZL+r5ns9nIkEfdsFqt0FphtTgc26pmuVwVDd6p7U+mek1vFjHKEjm7EefufYxRWAxqxL6VTv+qqXhNRCtbBjyMthhTlepYBh+QpJm2NfQD5+s15+szhqGn7zqcT7KKEYSNoMp+ZI84VCSGVAFrJnVt0lxQj6KGqfK5BLYVjFhgBXksJM1gEAaFT9+FXOFmMaHccJz/6wgBPvaxjz3h6/nOxMHBAT/5kz/JP/kn/+Sqd+W5iE984hN84QtfuOrduLJ4bKX7Uz/1U5OONLJE9UG69bnBNcECZUk9Gj/u0p8uqGaREoFOiVrrYgU+1YjN2wDKkMaUfpYfz9SurHmw2Wxo25au6+iHgbZtOTs7Z7vd4lMTqGkalqsVzWKBtdUs4e5OcuXHxjHoSUNJZUgkf06ISboxHTxJ6KYWgRtlC6ygdYWxNcbWxY9u3EZMFWNH33fi/Ot7QpCEWirOOCbQqGJqSCqKD1oGaRlpXjO8dQYFQAwQfPo3MEucLgZc8AxOdDn6oaftO9quY9u2bFMlu9lsyjnIf5P/Wrbblp/6qf/v6/7Cvl1x69Yt/upf/atXvRvPRXzqU5/iR37kR656N64sHpt0f/AHfzAti9PwgICzZEp8yAKCE1wx460zfYb8eJy47CbO7zRZxulrifgoFkDTBJwr6CwZmTUQYhRhcmE1aCpriD6gEXPLPIHmkj25VhatLJWtWTSiq1BVCXKIY4Ms/v/tXb+PFMkV/qqqu+cH7GhA5jKfCFaWcXqO8UnESMiBJQuBEIE5+A9syTmBDRLBEV1+PieIk3WyLFvmctsJGTLODXhv92Znuqu6qhy8elXVs2tAtpixlvpWo92dnemp7en56tWr730PQJ31UJNSom5qOO+gjY6RPudikxKBjHWUyqVaaQKK50xKyCqoKaSCkqEnmxRBLQCY3qBtl9kEkKJUWtdz4iekehxNhunetLlFv62XDIfncITLBAxSqNjsPbDWhglAw2iNrqNJretaIteWiLVtO3SdRtfp+LPWBlqb2GLo8uXL/9VF+y4wn89x8+bNbQ+j4D3AG70X9vf3sbNzOmyEJWmRgoT14QPtcw1rIltWGkTzllypEKItfh2pkl3igJSySJPLd3OZGKcExuMxeeOuONLt0VuLSin0xmCxWGAynqKZN5iMp2Bvg7oehVy0oLxsBSjBUi5FVWq5bjiQkQxqjtj7TUgqVJD0PBqfiORNhSTp/nh8RT4KPGFJWUUrTCbW1arF3jd7ODjYh9YmRJ8uMLmLeWMb+tNBiLiZxT3rWB9N55bbBKeJEggm9fy+BIa2LtlwpkpBm0W+lCdOKwwX73fOD66H/D01xkRvj4ICxpMnT7C/v7/tYbxTvPaKr6oKn3/+BT65dQtWcENF9tKlUti0xB6mAmI6Id1J6YRjKpFihLtWpZa/Hj/GCvIm4L9z1RsTAkfAbCnZtit07YQ8bPECAG2IfefcuUDyDt4Po1RuApmPQwgiy1zelX8/bsyk5RXB0UxCKqqCI/9c8twVQsWWRGkFkHdkoBSFyie0KPViRW3KHQOhT10o713XT+fnnI9BkS/J+lhZweePU0h5eoE1zaSsYCJmZUIiY0AMCDeWAEuJ33zx20K4BUfw/Plz6vN3gvHa9IKUEj/6+GO8evUqtM9JS83oFpVpS/mDzCXAMiPQo85kPvr0sj1i3v4nJ728cotzuvkGmvceXdfFzRuucgOC3OrwMHb61VrDGBMfz80rmQB47Ozvq9YkXzzJ5KS7TsC8AaeUQqWaQTScyoDJgYz8F2iikEqFnHhO+LTkH08mmM/nmEwmqWW8zzpFZFEu22mmUt2hdGvwuw9dlm0P0/fobY9Oa3RGQxuNru1C+mB4o24bbUwhdF0Xzy0T8nqEy9+N6XHp0qUj5dDbxu7uLh4+fLjtYRSccLyxG3DTNPjz11/jJz++AtPrWFbgLIn8hRdh5zpJqYAQYWWkW68VV6i1dIIQAlUo5/XBBNxZCwhaylPhQzJSz4sKckWDkFRA0TQNutAUcjIZU4cFa9E0VZSDsXetdwJNU0PrLh63GY2wWq3QsH5WBWKULpBnDSnTJMKkqmRIpQRFgayo6y8pE1iVEfxbBbt6VVCSxHfOh47AUsJ5Sw0tvYubUdY69H3IcQtuvBzSA1zk4BG9MqKaLOpsqdtHlADGScxSKsHSGLwLhNznES5FtOzy5lwWa3OqCYnwhafrwwtAOgHnLerxGH/80x8wmUz+pwv3XWA6neL69evw3uPOnTvbHk7BCcVrQw3vyW5wd3cXo+k05Cypt1ldVZkAN0VTXIGWR1X8Ic1JkpF7GNhQYOHD80WlovyMSTrPG0f3sDWbybquo/TLGIPDxSG6toUxBsvVEtbZ2BGDIuMKJIaTaJpRbOc+nU4hGzIdz6Vk1lr4oH4g+VeTRbFV3BSrqxpSKMBLKFkBglIMHrSBxnlkLoagdENwB/OAsx59kL/1QfPati1MIDznj6YM+Iu312wQnHgPOEdpARNuvLHFN8OrgJYi2a7tSJWgOcKliJbzsdYmWRinFeIqhUldJLkdpMS5Dz7AhQvfP5Ji2jQePHhw7P3T6RQ3btzA/fv3NzyigsePH78XXTzeqhvwbDbDl1/+DtVoBB9yfUyiFL36wdL6dSmHHEyc3KHChQ9qb/ugi0gdiDmdwOMChh0sVivyyR2Px/SPBZIej8eDtjsvX77E3t4eEfByia4zsJY6/CpVAZ4Ivq5ZPqZQheU8bYZR8YFHGJOikoacbKWoIQRH9iJE4RJK1nHTkf4HCSmGBRZsKkTnR6DXPdq2xXK5xOFyCWN0POf5uWBQcQJFtjbkabnTBU806zci8y7c2pgq4O9aa+jexAj7uEac61pfNvphaZ3uDaSq8dVXv8eZM2e33q1hb2/vPxLrZDLB7du3cffu3Q2P6uTj4sWL+Oyzz47922KxSCZSJxhvJF2ANqu+++GH+PkvfgnnHIzWVP0V87CIRQlp6Tnc8V6XHfFjBtravoc2JpYae+9RBVJumjqSIUvF+IM+nU4xm82ws7NDFo5NA2ctuq7Dt98uYsqgbVucPXsW8/k8i8xdjKKVqgcbZ4l4ZSJKIQaWlXQXRa1cXUuROaUTeutilEmvmXqWkYqBjyupKadIuW2tNRYL0hV7AKpS1CsNwxLb9XytCxVhFNXaQXUY51zzvCwTbU6y/Hh+X1NEezRXm7brAnwohomVw7Ri+tW9X+P8+fPhHG/fS/fg4AD37t079m+j0Qg7OzsbHtHJR13XmM1m2x7GVvHW28eTyQRXr17FdDrFJ7d+hjOzGazro+ieiyJMcBc7KhFLm19sQM4376mSbVw3EKEyrO/p2Dzz9dnPknuKSVqWd6s2Vp1NRmNSMIDImjfsqqqCsxbLxRJ7/9rHctxiNBqhbir0zqBWFeqaWhMBZIVYx2aZgPMpsleVgjUuFigIyY5hIWUgUscL56lcVwgB4SxUTV11lWogISGRiFdK8txFKNU1WuPli3/iH8//jlcvXkB3XdrIHNaXJSIMqQTvkrlMnubJJ7xk25kmhXzD0zry2YX3oaSNfMmcEKgg0IdcPryHCsPhkTnvgWAQ1HUGnz78FFeuXImrmrfoiboRaK23PYSC9wxvlV4AiDRPnz6Nq1d/ir/89W/43oUf4JuDQ9jexZJgH56jwu5/bsrNOdH0oUOUdklJuVRVqUgedVWhFjKQYPKezY8Zo2WVcr1d12G1WkEqiaZpooQs32yTUmE6PYXRaBKaJJKS4NSpGZpmjLoeQ6kqmo4rpVBX1HGYx8uRqvNDVUY0rMmUD/zasqqDi1qoeqtqSO5EAawdh/9nVm4QgUbSDcoD51MFnrMefe9ilGoztUZMEwTPCo5g2cGM87SDohYkXTJtlvXwgdUtPFUsO8ojOEEbeXwNWA9o7fHRRz/E06dPce3aNczn82OvrYKCR48e4dmzZ9sexkYg1nNxBQUFBQXvDv8fa7yCgoKC9wSFdAsKCgo2iEK6BQUFBRtEId2CgoKCDaKQbkFBQcEGUUi3oKCgYIP4N6SqeECFO87qAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAC2CAYAAAB6fF5CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9e9BtyVne93u7e1327bucObe5acRF6MJFAgwi3CxLBklIKiiqcLliBSjKuOxUkn+SGEyRyKbiFGW7SjjGKZKq2KGgHBcxRQVfgGAnNgYHy8SSHYONGMFIMxpp5sx3vtu+rrW6O39091pr729/55xBo3M0c/ZT9Z2z97r2Wmuvt99+3qffV7z37LDDDjvscH+gHnQDdthhhx0eJuyM7g477LDDfcTO6O6www473EfsjO4OO+yww33EzujusMMOO9xH7IzuDjvssMN9xM7o9iAivyQi3/eg27HDDl8oEJF/KiJ/+n7v+1rGq97oisi09+dEZNH7/qdezrG89+/13v/0H7Idz4jIH//D7LvDDvcDu9/oFwbMg27A5wrv/Th9FpFngD/tvf/Hm9uJiPHeN/ezbTvssMMOm3jVe7qXQUTeISLPicgPichngb8tIoci8g9E5JaIHMfPT/T2aYdDIvL9IvLrIvLX4rZ/ICLvvcdzf7+I/IaIfFhETkTk90XkG+PyZ0XkxT6NISLvE5GPishZXP8XN473vSLySRE5EpH/pu+xiIgSkR8WkU/E9T8nIldeiXu4w2sfd3snIr5ERD4Sf5//R//3JSLfICL/Iv7O/42IvOP+XsGrD69ZoxtxE7gCPAX8GcL1/u34/XXAAvjJO+z/duB3gavAXwH+FxGRezz324F/CzwC/B3g7wJfB3wp8EHgJ0Ukeekz4HuBA+B9wJ8Tke8CEJG3AP8j8KeAR4F94PHeef5z4LuAPwo8BhwDf/Me27jDDvfyTnwv8AOE318D/A8AIvI48A+B/47wnv1XwM+LyLX70vJXK7z3r5k/4Bngj8fP7wAqoLzD9m8Djnvf/ymBngD4fuDp3roh4IGb93Du7wd+r7fuK+O+N3rLjoC3XXKsnwA+HD//t8D/ttGOqneufw+8q7f+UaAGzIN+Hru/L6y//m/0Dttseyd+vPf9LfH3p4EfAn5mY/9fAb6vt++fftDX/YX296rndO+CW977ZfoiIkPgw8B7gMO4eCIi2ntvt+z/2fTBez+PTu54y3bb8ELv8yIeY3PZOLbr7cCPA18B5EAB/O9xu8eAZzfacdQ7zlPAL4iI6y2zwA3g0/fY1h0eUtzjO/Fsb5dPAhlh9PcU8D0i8oHe+gz4vz+/rX5147VOL2ymUPsvgTcCb/fe7wHfGpffK2Xw+cLfAX4ReNJ7vw/8FF2bPgP0eecBgbJIeBZ4r/f+oPdXeu93BneHe8G9vBNP9j6/jjCSeonw2/uZjd/eyHv/4/ej4a9WvNaN7iYmBA/zJAYDPvSA25MwAW5775ci8vXAf9xb9/eAD8RAXA78RdZfiJ8C/rKIPAUgItdE5DvvU7t3ePUhE5Ey/RG827u9Ex8UkbdEr/jHgL8XveCfJfw23y0iOh7zHVsCcTv08LAZ3Z8ABoRe+jeBX36wzWnxnwI/JiLnBA7359IK7/1vE4Jlf5fg9U6BF4FV3OSvE7zk/zPu/5uEIN4OO2zDPyIY2fR3wN3fiZ8B/lcC3VYC/wWA9/5Z4DuBHwFuETzf/5qHz668LEgkvHd4lSAqHk6AN3jv/+BBt2eHHXZ4edj1SK8CiMgHRGQoIiPgrwH/HyESvcMOO7zKsDO6rw58J/B8/HsD8Cf9boiyww6vSuzohR122GGH+4idp7vDDjvscB+xM7o77LDDDvcRd5yRlnhD5xzOWc7Pp/yjX/pl/swP/gCP3rxCtVwgKLTKsNbivUdEEIEwecsBChFFkJZ6RPUmTokggCB4FIIH8XgfDiBCWEY3y0GHoyBKAAVe8DQoD0opRHzv8Dp+cqSUCU6F88XrQ6n1fufS1AoS2ysCzvd3QJS0134BLt0TwffbdoHVEUSpcHVeUPEeeu9Jd8nj1vcQwcdF6fzee5SO7en1qUqpNE2z/T9tn9Bf3sel17axX79dIoK1FpMX3HrpJT784b/JH3/3d1CUZbu+vfAHgL/0l/7Sjlfb4fOKD33oQ1t/23c0us6FN/oXf/EXef75T/PP//mv8S9+459xcDBgtZyBV4gIzrnW2HrvCO+gRGMbPgf41tClY4fVwSBbAeWjMWD9bQxbdJsHYxONuO8MiPdu86VeNxgia/PU+gZl2z6bRkmQjXU+Xut227G2bX8T1Z2zPYWA93H44TxOYqfg14+X7ncfqfNIzwHAu+7amqZpt7sbj7/NiPbXbR5j814pCc9XoXBVxfWre/zlv/yjHB0d8Sf/1PdSlOVdDfkOO7xWcUd6QSmFUooPfOADvPOd7+Jf/svfAGcxYhByvO8ZDII9c61nFw7dM1lr3+CiQcP71i7d2bOi9YTBorVuDa0ohdIKUWrNo21P7bskP5vtcM7h4rrkuW823yXXUrr7s3kt29B57a1rSrp57aXG6/cEw6a1jsdNVjQY0nS9AKIuGvxwfevf19uyvZOQNES5ZH3aZtMj3jTAzllwDu8tHo9tFE3T8D//T3+dZ599pu1wd0HcHR5G3NHoJuNzfHzMO771m7HVqqUavLfRaYwvlw+0gNamfeG9KBBwvsbTgHRDYBFBvAGvo7PoERyOBpeOd7FBwWQJgUYQD2istdE79ngJ2V4aXDRVLpg6BU7CMVoD3XrH0YhodcfBrgA6ee8+HNmz3XgE8qPzOoMxU4iPHQTB4/bWdR5z6nQEvPi10UDoOAQcuKY3SvDd+rbz6Ba391prfYFK2Wy3w+MDYxMeyZZ71D/GZUbTA14JKAUieO9QXljOF7z/fe9hOj3fGdwdHlrcNZDmnOPpp5+mKLO15a2n1S7pUpd1HG7gT6XHYngfjEl46WzPeLYHBqQzRP1z9Yxl/3hpuJuG/mt2U6QdyveP1f+e9u/axQUDddmybceVSGEkj3P9nN21bjten5uNR+s+S8+Y+c7obTVgG53HpjfaN6jtcg9iPeJCB7CNQuhTG93zvkjPbDtvnmsO9kp+7+P/Abczujs8pLirp7tYLvhj73wHTdO0HmVaJ9FAAttfPO8SF7B23G5ozMWIUrIv/cPc4QXtG+FkRJxzkVq4GBjqe239HJf94112tuR9p2H45jW3x9ngYHu3KXp+HZ3R77za3frt6Z3fQehAlLT0Rhe8lHVel/UOapNO2RY0E6Lh3bi2zQ5l83lso2o2P4edNVjHd77v21kuFni/HhjcYYeHAXc0us45/q9/8k+4+sgBYdCegkl9+EhPrntdyWv0cbDber8+WCClhEQgrL+cvlU0BMHA5fwi9AweXaCq2z7uuyVo0zc6rbFq97o8kt9eAuue8cWGtU77JpO9ZhwT39wfzuNTK6RlwiON3TOYm51fL1jn4x3peaKXXf+2drcf7+K53g2b53U2BFlf9+RNfuPX/xnW7ozuDg8f7mh0rW34Tz74QWxT0xow51srsO7V0PucotjJQjm8S9ZAgU/qBR8CV3G/1kPbcHf7BnCbIXDOBQ60J6kKZ3XBc3O9hVvQHh/ZIuW6eN41j3fL/qmzIHYsPhrAZFz7krN1OiTxutLdYyLH2jPe4fydQV0zrukaXHf8bVA9brrXmGjZ6c6fnvcW9GmKO1EMfXjvaZqG/+zP/cC6gmWHHR4S3FEyprVif3+Mp07u3SUv1UVvajOC3r3JluTFbVITbVCIzj5e6nH21gdvdZtWNhj1taH7lv0TLlInd95n83o32OSLXqH3bDtsGtZD6qg2PPi00dqAwEeK42Lb7qQu6G3ZdTDpGFtsYJ9G2hLa3HreOyEcS3P1kSsYre+6/cOOr/3ar1377pzjox/96ANqzQ6vBO5odP/BP/iHWNsgyiHo1rtNPKUnvvtx+34Qqh8Io10f/M9Ov9tfF40IFx3STc52k2Ns27OFC03H7VvyTdnTZoR+s13t+bYE4da+c+GSL24XvdS1ZRKmMSTD3dIJ6ZhrpxE2LqbHg3f3Z1uQq/PIe+2Uvs292HF07XyFAl8C4hTiHb/6q7/Me977/lfmuK9RfMd3fMdawLVpGrIs4yMf+cgDbNUOnwvuSC986EMfihxj0BG5NPBPw1BIY+nem9xNUOjzjt4TKYZ17zAhGU6RqLG9xNHse29KKYzS5HmOMRlZFv601mitIWlYe5703Ya/24JI7d/mNu14/y4G10dPNhnERBcIQWfb3tKo5JXOww3n8uGP8MC0qHhcaY3k9o5I0EoF77l/78KXOKsvdJzO+o5K3jhG2iZdx4Vr9S0pfSmF04f3HttY/sqP//d33/ghxjvf+c4Lv1djDO9617v4pm/6pgfUqh0+V9zR0/2df//b3Lj2CM71HKNkENa4wLQsLdTRzvXHxAJiIQbVNofAF4bqauP7Fu8UQItQlEMg8JRN02BdA2LxVYWPw+JtHvLm8dPny9ZvXHK4Ni+XGlwIRqr14iVO8xVBicLHQJxqr63/gvVUAhdYivXOqv/9ggzNd/use9e0Iwvvehx8GDJcPFf6P7bdpZmH8Tip/d2iiyqHdD/SVO9P/N7Ht9+0HXj3u9/N13/91291EvI851u+5VvQWvNrv/ZrD6B19w/vec97yLIgV/37f//vP+DWvDK4o9EtcnMh2LFp/DYRlnURdqXCtFW1ZkQhGJ91A6IuCZSFfbZH4ZUxlMWI8XiPshyglOL4+IjT89t4ExQGztoLx7kX9K/T94xOaH00IMnG+c77Dl99t52sG1MR8M5tTKdNNEfnMAoSpnb0PXUu0ruDwYC6rsP9UAprbTfra+OaLly773ViyYBe0kndTbrnhVZ1cum2vT54snevhZUfPrz1rW+9oy68KAre9KY3vWaN7nvf+17G4zFvetOb2vvwWjG6d6QXhoNB9yW+7dYTvMd1uUJYrSC8VVFKJcloKZR2hFlnGXiFqLhc1lnEPu+Yps2G4TVIG5ZPBkGBMowGY/YODzl45ICr167zlW/9Gr7kS97MaHyA1marsU7nuqwDSUarz+fK5oyuzhb2eNrwrVNBBEvpoooBPNaD9kKR5YhSODrqRiQ8lJbKiPdBiQ8z5lRYonSgGMrhCOs9ymiMztCmm5osKp0RJPIZfY/eObfOEsCFvA6iJNI93b7OuR7h3CHNc7mM6ujIkLDroMgvPJMd4Lu/+7spiuKu2z3yyCN827d9231o0f3F+9//fr7ma76Gt7zlLWsdzwc/+MEH2KpXDndRL4TosiTvB2Kgx/cnedFz1uJnh5Is7hOHoXH6a7BUMZNYpBH6L+mm95eG2WnUu74taKPJCsN0es7JyRFa51y/doPHn3icvcmQ3/3d3+Z8eoKtmzh9uWt3OlbKodCf/HHBSG9zMel5zht0RDiGYl2nG+6g9uE+2sauHcv1vFxiUCu2Jtx372msQytFYfJAp7gVznuMyRgVe1T1FNu4rjnR+/Q+cETO+nVjGeVvfQ+936GGXBRuzZgm+ZtSCrd5Q+g8/k3ttiBhKnZ7O1+h4NxrDE899dQdvdyEPM9bdcOv/uqvfr6bdV/w/ve/n6/6qq/CmIum6Yu/+IsfQIteedz1ySaPKHzpr0npA1NgxbeelFIpKCYgGhGD89HASI2oaL43PNCLkrPLaIye14Xn6OSYW7ducXJyxgsvfJY/+MTTfObTzzMoR7zhDW+iLIYoo1G9RDHpHOl/ay2XYc3D633f5kGv0SBrFGrnGhrCULx2FmfX8ysoQFw/8U8MYtqQ/NJojcnzNsBmdEaRj9jfu8r1Rx+jKIZhnQocsojgvOsMuay3P50oTfToL+urIZTRnTGOs+K2GdzNe9uHk06VtjO3Lw9f/uVffkE+BoFmeOSRRx5Ai155vO997+OrvuqrWg53EyLCn/2zf/Y+t+qVx+eQxFza4FL6S15VyHHbGyKveYjr7uJW3rR/lq30a0wRqQ1FMWQ2m7NarVitVtTLFefnJ/z+Jz7BJz/5SfJswBOPP4VWOUqZmHN33eDn0Yhtnn+bUb1XPjhe3Gaz23kRNo4ctNZ4gbIsyfIM631UL3T3pw3kOR/aGikGYwoODq/xxjd9OW94w5u5cf1RysEEpXpeQhzze/GgaEcWrUHtdWCtYqK3bE0tYvSFe9fOHIw/gs17uBb8ZP15vqx7+RDj9a9/Pb/zO7/DRz/6Ud761rdeWP8lX/IlfPu3f/sDaNkrh3e/+9287W1vu9TgJly9evU+tejzh7slMe9ejLVRaTKqfm1Fisq3XlMysNIAOtqgBhGzJr9aMyxhYWuwfMtDrk8sSOahqmqsdRidIwhlaajrGmctt269QJYZnnjidUxnM27d+iy19+AanOvOuaxWTEZj5vP51kBbS3akdnmi4qC9HT3uN7UfPBZBp50Bj1fhGrUTnBKyLMNVFXVdY4yhUTHDmgNFyJqmdPBaszwPp7fCcDLhicdfx97+PuPxhCIfUFUVw9EeJ+fHUC/ARadUabwEmgBUq1aQSAGo3qjDRRVKmnVnjMFaG+gC182s69+dRD9tM6FrnVkaGfWe+Q53x6c+9SkgvI/PPvvshfXGGIbD4f1u1iuGd73rXXzd131dS2e+1nFXT3eblGpz6JyqQ3gP1rmoPU2eUDxO6xOpteP2h+x3jpB3uQR8rwNwzgUPt67DUBwVtLpKs1qtODq6zXQ654nHn+Sxx57g8MoVRGu0CakOjTEYpVksFpdee99jTdNng/EJf1spBkCJZv1yAp8LwdPF+dbz9t6zXC5bgxZoGtXKuELib4t1DVkmPHrjUQbFgNOzU87Oz7HeMR6PuXJ4hSzLI5UC4MI9jjkv+gazT1P7GOwLwbXWz8Y1FoVsLI9VOnrXu+0Zbhs59D/vPN2Xj+PjY974xjdeWP6VX/mV/IW/8Bf45m/+5gfQqj88vvVbv5Vv/MZvfGgMLtwjp7v5PXk73TpHqBjRy30gEpf5NaN1z8P1u7yQ6dx1XSE93Za1Nc45rG2C191YptNzimLAZHLAaHTAo4++jkSP9JOQDwYDsiy70NH0O5g7e2f+wqdgVMNkDw1oF+RiCRpBrMOtagyCisqGdoaaCGU5wDlP0zjybMC1q4/iGs/R0RH1YkU1X7A4m7JYLDg4OGAwGLXBPS+qVSX4nkGHpEKQGAD1bXtB1jzb/l/rEW+REm5iG3++M7SfOz7+8Y/zFV/xFWvLlFLkec473/lO3v72tz+glr08fMM3fAPveMc77hg0vHbtWnBGIrTW/Pk//+fvR/M+b7ij0b23F0Tav3Z6b9RSKR2NmqgYPOuYXs+6nCgtAy4Y6u48XbuCjEkjTvC2YblcUjerjgJAyPMMbxuaqubk5ITxeI/Geuq65uDgShh2+563KbQBtbSs37C0Db12B9agH6DqAlgp2JjoAgf4aAyTwfc4RCtMnnUz8SJBKiIURQlAVVXk2YCD/SuAYrlcIpE6mE0XTKdTTk9OUEpR5GV3v3z/uSTj5xEVnk+n84oZ4SSsc3iMMReChnfqdFJnLEigLLYSDju8ElitVluXiwjvec97tnK/X0j46q/+at797ndfamPe8IY3oJTipZdeurDu1e4Vf07VgNfkW6QMW325FyCu8467FFxBFRF5Q7vmNfVVqtuRPGoRoa5Dnt/xsCTXZq3kTrVqqK3jpZdeYjGbU68qnnjsMZx1VFWDNqHkkDE5iGZ6Pse6IJPa5pH3edt2Gm/0YnH9BD++/S/Er6TlTVHB+wRwddPqc20giqMhDRUX8ixHibBaVRTFkP39A3KT4SsbZGN5AUqDVsyWC07PppyfnzMZjzGiWm4WAaVV/FtXJ/SNqtY60CcCosBiQYNX8UJgfaYgtNnP+uqHoJhIgsGLVMJl9MMO946nn356q5oh4bu+67t485vffB9b9PJwJ4furW99K08//fRr9vdxx0DaNoSJrGzYRRd92GAww8vXvVidsVr3VvvrEw/q6UrvtIG4LUZY6F50Ywy1DRH6YZkzHJYMBiOWyxWrxYLVasXt27fRRnPz0Ud54onX8dxznwrJfAiKgDzPmS9mjMd7TKdn+C3FH9sh+JrXHVsjXRKgtL7PgUpYEKb+xnwLxpi219ZaUxQFy9kcH9uktGK1WlFkBcOiBA+LxYJhMWQ4HFIMBtQ2nOP8/BytNSenDZO9g/W2927hndQiIfl790ySt9+WQ+p5/Gl/R9BaK9a57nR2zcXsZO2z31ENnxOcc2EElG+fZPIn/sSf4Gd/9md55pln7m/D7oI3v/nNfOADH7iwvK7rtdmUCcvlkrIs71fzPu+4Z6ObDKEVwPeLeyfZEVGETxj2xyq9gUZYP9Zm7oD4gTTsbQVnvtu+X1o9bJEqEQPi0VlGluUMRmNEC06ELDN4mwdPTylu3z5GG8ONGzeom4bnnvsUTVXR1J7BaMheNuD8/KylNtYMV/yslEKLWu9MeiEpiZ2Ai4G//nRc50NAS5S02rG+AfPOtZIZpTXL5ZIsKxgNJ3jnaZYVe3t77I33KMqC0XhMXg5YrSq01kynU24fHbO3f4iXDFE1OId1DTqpKDYke/3rDF5xSJITDGrgoVvOLVIp7TXFy0/pKPverpKkbfFtJ5R0vYnS0a9RT+ZzQZIv3gs+9rGP8a53vYtf+qVfYjzePqX61TKLaz6f893f/d38yq/8yoV1h4eHNE3zqqcVEu5odPsvY8qfEMxd35pKV+q7tUFJ+nXxeNsM7prhbQ0eLQ0R2NBezodoA6wH6z3GKJQSxqMhog06y8AL1XIRDYSjrmu01pydnrK3t8fVq9c4OT0l04qz82POz09QYsjzjLIYMp2exWsH70OiHqMNmcnQOkPHGTNN0wSv3Id0hYIjL4chgOUb6moVPEXnaZpodOLkiK50fRjar6qqnR1XNTUmz8izInZinjzLGZQDlBbG4wnD0YhlVUfjbEAszjfgmyA/swrnLFpp2hhn75m0QURnwfuolOh4eetsoE+SzQ2MRbC9Lnj0XgI9lOiTwFP7UBU6nqfLmEY7TKqdbbOf7dDhB3/wB5lMJve8/a//+q/zPd/zPfytv/W3GI1G7O3tfR5b9/nB2dkZP/ADP7DV4L4WcU863c740jqgSUCfNJ/9aD1ig/8rNm25VY1w0QDLmjA/LIdkKbqaYC3JAeIQ0RRZzmpVMy5K6qpCTMZ4b8J8fo7UHu+knep7+/YRjz/5JDdu3ORTz3yCyeQQvGE4HOB8GEo3jcVhqZZVlH8Jg3JEkQ8YjMcU5QjnLPPFLAynfQjQaZMxmeyT5Tm4htOTY6qqolrOEWXwTc3KNeE+Rf2tMYbJZMLZ2VlrgJumIc9KclPgmsTh5m2UGqBa1dTRA5jOzgJH7Dyz+Sxw6S5U6SCOOsJoZX0GXFI5hOcaMp+p3v2WnrKh/S1oAeUjoetbDje4tkERoZJs8DL5GKD8zui+EvjlX/5lHnvsMb7v+76PD3/4wxweHj7oJr0s/PAP/zA///M//6Cbcd9wV3phnQME8K2H4r0PEXdPKw9LovrwsiragjXeX5CGXPB8e+fsG/pWRJBkS3HrtG+WZTRNw/7+hKZpGAwGeOeorcOjAUtZ5CijyYswweD49ik3bj5GtVzyqU8+w3g05vx8imjFYDBguLeH8jC1p7gMstywv3fIZP+QycEhh4dXMCanrmu8d3z608+S5zmPPHKdshwwKEvOTm5zunfMYjHj+PSY6ekJdbMkb8IEklAWPQyZqqpq8wGfn5+TmUCXOOsQL5g8J8uyVlGglDAoB2TeM51NEXQwlt6xWiyjF90vea/wPmio+4Es530I7HkfPHWRlqGHmA9iy7NKKoj05FQMKHpCsM0733ryrRa7p93ORF8wxDt8bvjpn/5pBoMBP/ZjP8a1a9cedHPuCZ/97Gc5Ojp60M24r7hneiEgVNldl3bZNQlVXBGG3G0wLXCUm9jUbrpoYbdJKtJLn0T5zjnEd7ypMYaqqiiHgzhRQjBKkeUZy6ZitlqiaxWm3CqFtQ1NY3n0scdZLmcobRjujSmKEIRTRuFWFS+Ipq4bRqMRBweHjEZ7XLv5OIdXHmE8nlCWJYLixo0nKMqCvb39oBOua8qiYDze4+TkNuVoyPOuoao0y9USRQgcIMJwOKauK7IsZzabBuOq85BYvPEMyoKiKDBat4bXZBmiFbnW7Ok96rpmcX4K1tNUdTBvzgYJGBINbpfPN95VEg9NUmKQ+OewhYJ25lrf8K6NgFzqEONz7dVVcxdSWHbPfmd0X3n81E/9FMYYfvRHf5QbN2486ObcEc899xw/8iM/ws/93M896KbcV9yVXui8U48oh6JLGhP+D5ypYNphf/BoQgrGpHfoi++3BtLoybA6qx7Xb7yc0s1vSwoA59yaZzUYDMi0wWMpyzBFdj49p66rYChFsVwuGE8mPP66pzh66ZirV6+xWq04ODggy3OqxYp8MOL8/ITBYMhwOKbIB4zHEybjPQ6vXKEoSwbDMTcefRznLM47quWK+WyKaE0+mJKVA/ZWB9Sriun0jGFTo3Ccz87IswGZyZjPZpF/NWidoSTDNZ5MK7RWGKPIUu4DFatrGA2isXbFaFAwLUpsczt6wqF6hm3qnuF0Pa833EpFd8OTnrflY9c4dokZyqK/muQY8Zk6l0YotFx8okrWotFK2sTuu4kSnx/85E/+JMYYfuiHfoibN28+6OZcwGc+8xl+67d+i1/4hV/gZ37mZx50c+47XoZkrBO7r3uovXBJEt73g2obHO02g7uNeticHNF5UiGQp0SD7zwv53yI/HuP1jrkMlBdghZjDKPRKMqfAo/q8WRZwcDvceVQU61qrhw+QlEUOCXkhXB1MOTmzUdZVSu8BaUC9zscDhnv7TMYjiiKYQg8+Rrb1FT5iqIsGa8WHIkizwyLRclTT3lOp2fU1QrlPUe3XyTLcpbLJUYbTk6OKYohxmRUdUNmFIOyJM9jKaIipxwOKIshg8GQcjjEe2E5mzE9n7Yefr2q0Mq0ErBOxqdocx1D6OFiXuO+56lInq6PmTh9b/+k2ZX2z7VaMryut5oAACAASURBVNpCoGmSSj8/b38245audIdXED/xEz8BXCxs+YWAj3zkI/yNv/E3HnQzHhhepk53u2fivceLxBy7QnxtQxCH7kXdpntdeyGh86ToAj89UcTasNZFQ+xjhC8N10UJRVHQNDXg2ymt2hjyvMB5oalDkG+1WkSFwJI8N1RVEwzr/gRvLM5CUeYolZM6kGpVoZSmLIeMRhOMCTkWrFM0OvCteV7Q5BnT6RRjNIIwzXKuHF4FPN5ahsMh1jYsFktuvfhCrHyhaRqLEk2uNEVZkJlQB64oyvA3GCAmQ0STZYbxeMT09ATfNJgYhNMmZFSzPiZ9T+ZXFCLpvpGiohe4V9UTqLSSth4XnCqBpDJNfQ1v2/ludtK04oWWK97h84dkeHf4wsK9B9JwrR5zEyKC4PBeBx5XHD5OVRLpEmpvcoL9/dvj9I6fZlMhkJJ4h+VhWcgvm5JvWxrb4CrPaDSKCgBLlukYaAvGR5mQDMeYjExnrBYLqtWS+XzOYDDEORey9ltH0zQopRE0V6480moonbOIBE2lyTRGhykAdeMQspgUR2i0YjgcsVwuyJucoixwTYNtLDrPycwBq9WKwWBEtVqRmQznLdPzaTtLz7sQuNRKYWLBTZ2FzkNiACsrSrKybNUGdV3T2CZ0aj5JthItEDkcggQwOrSBCFI65IWII5Ww3rWdWheUSxMjaJdvBkEVcqFTDdx/6mB3fu4ODyfuKZAGIHgkJBtc53R9KgnTnz8WvwkgNr7EqvWk2nIyGy/x1jnJF3i/NHstFq+0DkQFraj3DMuS4XCIUopyNMb7UC1C62Ac6sbiddDXLmZzGteQFxlVXQHCaDSiqivqxbxNaWh0xnhyncFgQFEUIb9BUcTcEik5jG0H3FppdKbRWnFweMh8asKMt/mM1WLO6eyYsiwx0Rs9OztjPNmjyApOz08wWuOqGpMZjDFkWRGMbCuYDXRJnpd458lMhifwp4hHK4Otatoe0vfyJnQuaTCCPS+V9vl1PG9nONcNb/s5mk/Ve5bpdxEfVwisqXVvecfn7vCw4mVxurDOw6aZYsHI0pndfi0uOqlZwmYE/LIodj+Ithl4kRjISVI2EaEsy9bLTcdtGguEwFFVrfCuofEe11TMZwJKMRgOKQdDRsMRTdMwHI/whOmHx8fHTMYHoA3DyR5FnDJclCVaG3Ss82bxWGdxLuQ50FpjlMZP9tBKka+WzOdXOFeK2fk5i9WKq6PDmJayoSxKlIdimbNUGm8MOuZLMHmOzgpUnqEyg1YKrRSZyVBKsVx6hsNh4LRFyDKNm63fr00uPag+Ek3QGchNvlXFAJzEUU7H7QbiyCad9qYNjTyCdS7mn4gVhKUfHdhhh4cPd1YvREpBttjEFLxuQy8ioDoez8UXNfCCsmas4RKqQYIg7YIN3mIwiLOeUmcwHI7IssChZlmG1prcZFTVKlRn8B7b1HjXxKrDYX+T5eiqYjAc4X1I7zifzbl9dMRiteD4+ITr1495vXwxo+GQohyEKg+ZaWVwoeNJ7fQoUW3y8LwsEBV44eT8f+r3/wAxqq3ge3BwwHw+wzqLUYoyL9AimMy0eSGKsiAvSwbDEYNyFBQOSpGXoYBhXhSoOKzP8gKthabqUTQ9zrXzWtdvdOo4+x1cMLZhhJN4+bRNCJpd5OnTwdrAnI7J0tP0aXV5R7vDDq913IVeYM3gXdBqQnRs4/x63/N45GKik01czF+ggH6tsuBFJ8MN0JZr855QKVi1OWtnsxl1XbeTDIqiwChN08REGrYJNEDsDAInG4bwq+UK29hQfWE4ZLVacHZ2zmq15IUXPstqtcRZG4f7Iedua7y9i7QL0TClGxMmKBhjyLRGRHF+eoZoQ7Wc8eKLS/b39wHajiHLMrI8awNY4XzhnGHSxSgmNBfqpkGsoRwUFHmBaM2gKINMy1sk5qfwWLxPaTahJXI3YK3rpgYnHt15lNJY17S/ibaCRPsjuJwuUPEYfYWK9z5UFd0Z3h0eQtyVXmjlPxEXJV8+Rr+3vcaXv1Trnk7wsbzfLA65Tk20Q1w6TaiPErH5fN4K8YuioCzL4N1aGwtlhr8m8rTO+ZBDIebUFQlD6boOuQy89xilmE1POT8dslwuaJoqtsV1bY6ebbCxXSIY7z3WN0BonwJwnizPGY6GjIYZR0dHbZIYrRTlYMC0qdBGx04i3A9RoTiloFBKk+V5lMxBtViiyoKiHATpl3OYmOKSjXvXjjaEdkTRVyS0HHuSF0TJmLW2ra3Wzjq8RGd7YQST6OEUQEvPfSOT1A47PCy4s9FNcZgNQ5tyLjjvQlYwiRHy3pA0BVs2OdlN1UK7LCoghMAhxi26pvQ8q35+hm6mmm+9UGMMTdPgGhsNb6gmkcUkNa1HmWVM9vYwxnB6ek5dN4gIeZ4zGIw4Pj4OXq3yHB/fxjlHY2usy0KCGRVNsPftLKxk6DUgOqgYtNKI72bT5XmOrS17e3thW63xIpRFSdNUVFXVG00I3oVJIEWWtWqNLMsQQtrF2WyOT9pjCZ2OFoWVwGenuNZaNeOoONg6zPdhllq7JvWoQf6AUtIme+97sJuB0bTMpfzH7VMN599RDDs8jLgLp9txpl66BCWJJ0yaz5C0ryV46TxBANnqEXUnifFv72IUPB0kBOkuvphRH+HX0z2m3K/GGKrliizLo/cqiGic89imamerFUWOcw3n56dM9iYYozg6eok8z2mahvF4zGw2Z75YMalCPoemscGYe4+1gdqwtsHkeVv40dtwHTWQiwTDqxTiPVqrqMVVVNaGjGjasJxNEYKiIjM52oTlokJuC6UUTVNTVzWiF1gci8U8SMhMxmIxI8syhuMh6kgzGAxwvbykIgpliPkQImee+FaVZqF1nqfDh4TnPnzulA/d/e8b2vSbSLx2/4mtTwPuio/6nae7w0OKe1IvbOow07LEY4oXUtbYTk3gEdGsUQMb+yfqQqSb698/50V5kZCMcTD4wejhgu4UhNlsxrAcMJ2e41wwloiDxqJ18IT7xSDruuLWCy9S5Dmj0QDvhdVqFbndEdPpOWI0y+WK5XLJuLF464Km1YZAo7M2Jl+2eO+wFuJMkThUdygx6AyGwwFXr13jk8+cc3hln9OTc6ytuH10grWWyWRCkZWooWe5WGJt4JmNMczmM2xQzqKUpnKOl46OuLJ/wOnpKYE0COcONi0mIbKentqsNwDZ7m22/LmkjLrh2cZ5EGvPtE819HzzNU82bRNonZ2x3eHhxp2NrgjWe7QHL4K+ROIVPNRuyNilXoymeC1yflH+1Z7uDk1JnlIqnJhoiVDnzFLXlrqeI8BqMQ9BMpPhveBtSBBusiArS9xtqgZc1w3Hs1k7+aGqLaPxmKLI8ALz6awd9jdNQ71agfeYLKPI80gpNDiXcusKeEvjLdqB0QLicB4GoxFXr17n5PSE1XKJ1prj4+OgpDAZjlDbzdVV7CCkzbGrdZro0XB2dpsiLxiVOS985tNAqCqRZVm8dkXTxKfTC3aFjG8u8r/rfO9Fvl51kyV6zy15r9ueaddRbv6U1o+/LQnODjs8DLizeoF+8MpfCHq3Ufr2Re4nw4FgdHs1Ji4RxrceUfjSvrCb00+1VpFLDIZWKUfTOHTmwDc0ddOmTAwpHU2gIBQQPVitNYeHhygVSuG8dOsWRhtms1nYN9MMJxNOTm+3eQO01jhrWS5n1PWKxSIl+vZhCjDgvcV5C15QOtyPxtZowElSEQRdcDkcMh6PeeH8jOVsxt7eHp9+7jNMJhPq5ZKsCDIwkxnqqibLiAbfsaprTJGD9UxPzxgMCsqiZLlYhDSTAlVVt5yrSKxUwaZBvVxxkAzrts5xLeC24em2x/R+nT/uQUuYmtzPybDDDnfC2dnZa6ZqBNzF6Ha1wDyqo3dbiO9iLH2eTqluwgLQ5t9NBR/bPzpT0Kcw0tLNFzPwqF2TRTkQCy4EwJQH5xXeCXjBGME1FaI1ZVmGAFZjuf3SUZjqSyjhbm2NKE9VraCB+XwRZpxlBu8anK05Pz/lfHrK3jQkKK9sjTEanMXiqZqapmkQZRCBzCvEgvUNWmlAxwThgdsdDkJ5lcbWVIslN649QlVVaC0sqwXlcNAGoJomXJ/JMpytcZWnKHKMgunZKWVZslwt0EpoqvpCpdg+n9rRP73n2dIG/e3DM1FxJp9zvqs+0dsueb3JUCfHeqtBjZ23IK2Oe4cd7oZUwuq1gruoF7rKAheGnj0ZEKgwpI4SoU72EAyw6w1Rw2FbvqE7XvgU/9zF4aoKM5q0cyGIp0JwTCsTttEh1aHULmYZaxAFRhtKrcMQXQSdZXijWa5CwcrFYt7KzZIUrSyHraqgHA0REY6Pj3n8ySeoVitm52c4P0DjMVkIlNWNpbGWDIXyghePowGfhfSKSsfAYND6WldTrxYoFxQW8/k8Js4JuYG9c2HmmTaIDvdotVyGoFpVc3x0G2stTV2xWCzaahODwYDz6fmapwusGbmUXzc9o34HmZCG/955HF1Zof7zC/RON5JJ/HzXk/Z/Sr5VS4hWmJgFbYcdHja8rMoR/WXhBbLRburWOAdVQ6IEoqerYm6EO/CAbWCu85tbY5CCNG0Z8+BKQfQag/GXYKDwbdIakynyPEMRDMhisaBaVdRNRVWtWK1WgaOta6pqRWODBG6xWDAaTdBaMznYb6mHs5NTRoNhCMwpj0GHmWAmSMJwLsi0fEj2rkQQLM556nqFiNA0DcvljJPbR1SLJdOzM6pVBYCtm0hFWPSgJC8KRAnNKnjRTd1gmwZlQl6Hpg4cc1mW2BjMGwwHnLz4/Np9FaGbDSYpwXwIRCZdrnc+lGfvnjJJapb27f8eLvuddMHOzvauyf020kjusMPLRROCFa9a3H1yxGVDQAG86uk3O2fW+w0DLXLBaN/1+Fw0zkgo9e1VYphD8Kl23fTULFPtcETixASjM+bTGYvFHPFQNzWrahmM7aqiaSwpkY9tHJVd4X1MflNV7O8fYK1lOp0ym81Cpi+tKUwRyuxIHjhtYhYtolrAhXG8dUFqhoQKv6vlAm9rXrr1AtPzM4zSIUeBCGU5YDQaBXmYWlIOBigfjHXwxj3L+YIsNwyKck3ytVwu2dvf5/z8rONaew+nu9UXZXiiet825GT3iu55sfa7SMfqa4/759lhh3uFtZa/+lf/6oNuxueEe/Z0N6PNQaq7EWRJVYGJ003FtcfYnBTRHbMf2IkHpm8g1r1tC2gxEMuZN01DlgcKoCiLYBCV5sknn0Ssp24aXnjx+eDV1g11HarzLpdL6qYBhMa6mHsXRELwzTnHdDplNNlnNag5PT3l6tUrzGbniHi0JuZEyNFxSqsoE/hbJSAaLQbrG6z1NFEjPJtOOTs95vnnPs3TH/84RycvUZqSoijY29sjL+Y0Tc14PMZWlsY0SJGTS9DMLqZV9JgtUztnENUYTdNQmIxVs6RarQIfrgUn6Vl1vG0oxx4mXXjo3esu9eLmve8/tzXZ4LZthdbgb1NGbB53hx0eJtyzp9sPaq2/RL7lQlN6vzTvUy5s28F739ay9ykrWesirZ+/O28o/WJt8myDLM05S56HKL7JMw729rGpikKzas9f1zWLxYKm1dXGXLHeonXoAJyzQQMby6HP5ueYPOPKlVCI0lqPcyFgZ63DE+quiWjEebQ25CbHGBMCh06hVDhPVS2pqiUvfuZ5Pvav/xXz+RwasBK0uGenZxRlEWaf5QV5lgeqRBmyQQYuSN/qZRWUESpUyMjzUCBTFznT+SKpdcEF+++9D1Lm3hNr2d0eCRsCY2lCyeUa3hQ06ysUttEPl00XvkwyuMMODwPuObXjRU43vKxpwLiWzIS+Z9UXzq8frztmMNKdqYaUTnD9Bd3wumPC9KpeURRlMFB5mImWKAZrM0ajEavVinPvcN7jbE8O5UOSdYWgjKEcDBHRLOdzqqZiMV0wHATPMctyynJAXgzwXuGcDdF6FSZd6DgV1xiDEIyXEo3zhlrVNLbm7KUT/s1v/RbHR7d48cUXoQGlBS2GmzdvIt6zmM/ZG49BwnAqTCzQmDzD1Bm2sWQ6TFfWCMvFIpRxP9jnE596Zi1AJa0rGyY3hOBXymnRoVVVq85Yrj/3jqRNx2jLrqfnzeX6283A6A47PKy4axLzy/lX30WqYzXJGP6iSw8Yt2w1SuvoDGp65RMR6DfWbxvShimtzjusC7rUkAbR4Jqa89USrQ1pJlSe54xGY5qqCQUWncfZJpalCcm8lXiuX7vJm77ibfyzf/qPcbOaql5RLRd462gay3iyx2AwCvkNVIESTaYzRoNeHl8AF6rviobGrxDRVIuKp//9b/Px3/53nN2+hRGPGEUxGlGYkulsisk0w+GQxWLOYDQiUyH5TZEX6HKAOEeuDDZOZ26qGmsdmQiTyR71crmuNHChlFJIl7PF4EXuoVWQJeHJRpCzT9J6XLtPou994BQuGNWdod1hh3XctRrwpetapYH0hqqsvajpFd0mO0toDXmbk7Zdc8FOp5lU6/sK9arGHJq2ICW1xeHJMtp8tMPhKMifaotZGqpqTlM5vAPlPVoLXgTb1IjkfNEXfRH/4Xc+Rh2n4VZVw3AwZjTaYzQaYoxhMBi1tciUVuQxibiNEjmlYvYxo9FKOD854aP/6l9gqwWTsmRZr8iKIY89+Qb2Dg45Oz/hpRdfYCyhC5rP5xQpCbgDrwWUohiWOOcZjkbMzqeUgwGiFY1taKp1jS6qX9EjzUjznVSsnefho+46lT+66Jl6H6t1sN4hJqmCuItql0RL7eiEHXYIuCdOd6ux7EVgHB132E1+6PZPSF5n/9jd8fp8cThqCrJ1Xlf/xe00p2l6rHOOs7MZ2kFeligVKIHhcIQxeUzB6Bk2Q05PYOVD+kTnHXmWcb6qqVczTm59ihtX9nlaGWpbU9c1q1WYYlsWA4aDEVmWk5c5RZ6TaYO44D1rrdDGtO12ziEWpudTPv3JTzI7O2acK7wxFJmnyQr+yNd/I14ZTK741x/5CIvZCVpnLBaL9p4558CEXBaZ0WRZjvMekxlsYzFac3J2GjKqsT4jzPdv2WaQi76BTduvF5Vcn20Wtm/pJNfpfdd+K9Gwr42Ndh7vDjvcY8Kbbcukk4slD7XPvfZ1mxe52XazbtR6wbinDGZ3kpWFk6eaaNY2VFUduFXvKcoy5M/VQU+7p4TMaM7Pz1jMc5QtsHUFKFRmUHWNVo7jFz/BfFEzyDNWvRSGw1Ewtt5DtVoh3uJ1RsMSqS3e1Jg8IysLdJ6FYb0IjWjOjo/5g6d/j8nAoAcl1WKOKsZ8/IVztFqgzIim8bzlLV/Ov/u3/y+TyYTZdIbSmsY2WOfIKfDOUq88g8KhPGR5xsxOEYHlcsGFaWO959cnbzY/x6cWOgkVRiYhdadqd+6eo2o5YZHI7abfw4VzdyXaL0gAd9jhIcS9T45IsqMeTysinUxMOrlR8praQNolVQIEFYb3uudJtf9fNLj943fStFBufbVaUjeCs2Byg9ImnFdC4vLMGLI8x5gwO20+n9L4GjKFszUozajIGGRCoTU+c8wMlHlBUZQopRlN9lFasVrOmZ0cU2qDH88ZDAdkRlNkhmI4YLi3j9qboLMs5j4TjAi3X3qR/cmAQgpWuSYfFfz+7QWnJ59hUpZUVmOKfcbjMaPRGFBYV7dD/uVyQV1XbdVeay0TMybLDfhQ70xrHfJK9p6fUqHkkov8baI9EovuW7o2VABxKbApgQVWnjgNPOwf7LpvnwmOXhazmI+BuI3IBWO843l3eJjxMgpTdpD4zzp/F+RGmzpPuPiCrU9HTTPPoOc+pbNseEXJsDu0zsArJCbCqOoV0oDRZSydrlgul23mMGstw8GAvCwpywHaaE5eeJZmcYqtFYhmOCgxcYpqkQllUaDLkslkzJd+2RsZjvawzjI9Pebs+ecYKE12sMRPRuQi+MwgkwnGeUyeoUxINI6EROZaG/aGY8aZYrEqAM8je2Pq+RlNPUVnBcvGMigzVqsV4/GEs+lp9BTjvXbgmoYmzM+L2dI0QlBsOH9RfZC802BXU+8Zs6G1gbBI8ShZf7bpOfRyF7e8b9JUt8fdeNay3pluft5hh4cR96bT3RS2p3XQk4pxkYeQ7RrN3pdWb5tswfpZNlUM4SRKpbIyBE/WBa2uKMWyDtzr+fl5SHCTyqjHqhFZkTMcjxlP9tifTDj+7B+wmJ7gnWcwHFA1DotCqYwbjx1QTq5z9epVvuEbv4XhcMT8/IijF19g8cJnaZRiaB26OcAbgyoKlPJoo8lGJVIOMDoE+B65foOvfNvXcPLp32VgagaTEbePb/PFr3+MUWEojEFlGfOzU1y1Yqky9q8csqcPWC4XWGtDWkedhRwMWsUUlZbRYECe55zMpyiTo9RyXTubomY9uF4n1w+Eeu9RPtTw8HiUC9t6icnafAqg9oOg6499LZC6xavdebk7PMy4d3ph20qJ8iEvLQ+YBq1pWu7lB477kpQNvZNEDW7r37ZcIG3J8KTTVUpRNzV11TAcDoNkzLk28bdtGoZ7+4gIeV5gHXgvFIMhV770OtdvXOezzz3Nye0jSpMzzkrGV66yd3AFM5hw7dHXcTDZ59qjj1ItFqwWc05uvYg9P2exXGBnC576oi+DPEd7mJ3eZnF+hhkPyPYO8UqjRBgfHvIf/bF38plnnuCZf/cRiix0FiMUpQk0iBJHFvNWaK2Dh5zl2MUS0QZEMRiO0Epjck1VrYIUTGmKosRkGcT0miH4FmvO+ahakFgo0vc6Th8pIxcmUKQxRm+sEffpRh7er+fR2Ay2rXXUbr3672Wz3XbY4WHBvdELWzg50pDXw1o0jc5Ib76M6SXrJ8EOBjS94j3PbE2Ols7bpzQImca8p2ksINR1g/dhmG2txVuLZDlZljMajSjKgtFoEmavDQoODw7Z/6Iv5c1veRvz5TmL1RLxiiuPXKMcjSjKMXkxQIvBSYNgmZ6c0MznNKsly+PbVKfnXL/2KNl4zO3pKfPbL/DoU09Rn53DtRpfFoho8rzk2o3HGY/HPHrzJs/83m9TO09TVeQKlNFUjUUBe4cTDq7fpCiGzJcrJnsT6qqiqWuqmLYxJD535Canbmo8YLQmz3OqpQq165A2ruYkPbck9OueUXrGPnq0kmR+nl4gLVQCCbXTthvQrYHS3m+mb3h3NMMODyvuyegqrfDWhXpZrf8TXs42au18q0JYe5m56NGszcdv5WUbutw4/E2ie5FQOcHaFJ0Pky9S3bKyGIaEL3t7VFXFaDQKHnQ8nzGGQTmkLAcURcn+wT7Xb95kvL/PaDBA64zGNiHnrTEYVYAiTLxoLE1jKQclTzz1RVCveL5pOHrueQ5yx2J6zsAoRGluT5cU84provEq3BNRGqNDztmyKBnvHTK5eoM3zt5OvVrQVCtW9YL5qqauwJoM50OF4/PTE24f3aKOmciqumYyHlM3dbwflrqqWVUrMpOTMrz5NXc2BMICLetaNUGgalLX5qMhjkXvU2XjXkrI5DnfqwHtqyb6v4EkgdsZ3h0eRtyT0b2Mk/MoZG1V8o78NrFCt9XWAEsvUEPnL3eMg49l03XMmRCc7boOofq8LKibBussJgvVgCf7e4zH47YsezqYdRZtDOVgzGAwIS9zRAmlGgA2FpJUrOoKowzWNmilUHnB+MoV3vTVX8vrvvj1vP5L38CnPvYx8iwH5xgdPMIf+bb3Mr5xneHVR7BKo330HHWgGbCewhiMuUE9WYVZdQ6ctdTW4mzwJJfLihdf/Cyr5QJjcpx3MY1jEWaolQV1XeGcxOrBrs2pq7WmqsP9S/mME9mTgpaO+L8I4rqJKW3du56+t9Pthk7E+X49kM2Aau8pyvr6fo20l5vBbIcdXiu4o9FNHJ+nrbPY8o1tIKs/hCRtE0vTpOTXW469/UXtHat33JSNbC3pdZws4Rxt4ppVtcJkQRpWDEq89yERjFQcHx8z2dtjOBwznkzYOzjAZEJmwMbKDGK6UuFNXVHVVVRJhGvKy5LcWZrGMBqPmYwO2CvGVC8d4QRUWZIfHpLt7yN5FvhcpTBahwkkRoH2YB15OUCbHOtCFjIclIRcoV6gLC1VUzOfL7B1A1hOj09idQrB17CYL8jyDO9D2XeHY1AUVMtpO3rwkQ5opOPZBUG5ECQjcr0QDGlgFVKhUdCKtiMIPwrajJ7tSML7jc6XNR633XWtMvCO093h4cTdPd12FhK9YWZKRtMZ2n7Zlt7OPd1uZ2S36TRbI07nbSX0jy0iiNOIEuraRS/Pc3p6RpZlbbXf2WzGYDBgOp1x8MSVkLvAGIrBgGvXb1AOBmhjWCyWOOejtCwkyamrVWsczs7OKPMC7z2LxZLhoCDPc5TSZFdzlM649Xsfh+kMBgNUkaMyg4u8t2ssDYEbFULnkZmsVVtoUyB10xotnYVH0tQNhwcHLGYzzs9OGU0OMFnBYj5nOp2ijWF/b4+qbjBGh7LzZYEyId+E0RnWNXgLKEWG0HiHSs+DYDyFoOFtjWovoOmhLV7ZseyJcY/5Knx/ZMKFZ72Zw6EvZ9thh4cR96ReSFNGE/qGs5v22wuUtcsvP2Y6TnsOkf77vjEJInm5CpFQzhyfjDE0jce5moODq7EKRKikO5vNyLKMW7dusbe3R1YUKK1DhWNjcNZhvaOum5jNy7JarTDRexQJBmkZq/YWRYGXDJMpDCAG1N4eq2s3mPoXsLmmFqidIycEpZwLmiulVKguQerAFForamsxJmvvR5tukjDT7tq16yzmc7yzONtg85y9vT2a5ZLz8yWr1YqyCFUulBLGexOmZ7dpbN3K7JJRbQf0npBngiD/0tED9pu6vZ5xbANv6bl21Hq3Qf9Z9vftPedt33fY4WHCHYk15Ql835aXJXi7QJw6mmqMhcCYiodWLSu7g6OjewAAIABJREFULenJ5V6PxP3Xq83qqE313uGAVVO3XrAxBV/2ZV8GhHSIdV1zcnLCahVK2hRlyZVHrjEcjSiKEmsDb7pcrtosZGdnU5yDo6MjFosFzjmapmK1WnB2dsL8fIqvK3RUUTS4EO0vc9SwpBFFY0OtNOccdR3yIHjvsXUdaAzvcda2xsqYMHMu3ZtUbt2YkC5yPB5z8+ajjCf7jIYT9iZ7DAcDvAhaZQwGJUpCxVTfWA4PD0OeCaVwLnmvIQ9vv4NUgBFBp/WpQ3CB2lGJt5XuubdtJEgEW1nZBnfbf96bHesueLbDw447Gt2k94TtBtLHwEo7cUFc1O26WDMsBlB6L9qmt7NttlL3cq6/tEm5IEpRNQ3eCbaRWJnB8hu/8f9wfj7D2lBc8uDggKIouPLIIxwcHHJ8+zYnt29zenqKaywiIQgVEuWc4WK6xMduPs4wGyA+lD6fTqcMy5K9vYOQ4yHxqo3DedBG0wQlLEqHmV+2DjxxP1m6c44qlt1x1mLT/Yz3OXm66U9E0EYzGo+5ceMGxoQkOPPZHIByNMSpcNzRZIyIYlCM8JLhrCdTpi1dLRIiYInjBcLz2eRi+16oB/z6cxK6acEiAupiruT+b2WTVtrNTtvhYcedA2l3kPX0Z4iJqDjRIU5gEEeMjwdhfZwDAawZl01hfcK6Ye5oirYMuHg0Cmsrrl69ztHRESKe8XjIN33TN/H8p1/k5qPXODw8oGkcn3r2OT7zmc9y48ZNRuMJAsxmU+o6byP+ySCsVhVnZycs53MaG3lXramcZeUqyjitOBglR7VaMpvNWMxnrOoaeSkPkx4mE5RRrVwtZUGzNg7qYz6KZIy1MXjr2gi/S3I61R2jjMUqp9Mp5XAYSsfPQw24xjuMEhSawaCgmufMl/OoVuiUBMT0ix6itxqeY+Juu/vO2igj5HBYT1SfPm8+v37dtv72/f2MMa/6AoM77PCHwZ2TmPdlRuoyDyXMUPJr6xTJhUrSpGSi+/KhO2o813i/3j7p/6bB+4YXbz0fZWShXtpv/uZv8sQTr+NjH/s37TD9y974Rq5ff5Qnn3ySa9euh0Qu8dz9oXxRFDSNZbVYcHT0IpPJAYOyjMNxoakqFrbBmsApN1VFtVgAYK1jUc2wWlM5hxchL/K22rD3nizLMNrgBBpnMXF6bpLBKfP/s/dmv7ak513/5x2qaq21pzP0cGzHdpx4IJYc+ecQy78fP0CxoiBHSUSUSMgR4gIhbkiEQMJMN1wkv38AKUhcREFEQmK6CAgFhQhiA8kFBCcKJMGQgaS7T3efYU9rrRre4XfxvO9bVWvvM9ju7t19zn6s9tl7r7Vq1apa9dTzfp/v8/2a4hQBiT1iNFVdYaylamqWe/t8YG8PfGAYerquY9hsiH2grhu01iwWK94c+pxO82nKJ1Us4tPJiUwYITyadzvFaafUr8JgmDx392a9e85BqH7Xle6TY7PZXPUuXMdbHI+vdLNyVFKpuvB4GohQ6TnlKclJovyayaGT2J1WK/EIill6ME1ZBYYgko19u0EpmfrSWtP3A1/72tfEKWK1T1UZfv8P/oCTkzOUUqw3G45u3OLo6FDEbYwqQwYPHtzHe0dlLbdv3cFYVWx/UOnm4iMOwTVBKF6b9ZrNZoMLkXq1xLkBNwziHDzR1o0xsqgbrNbEUi2LV1xtLS6E4jOnleCrItMbqaqaG0e36Luek4f38b5nvT4nxsjh0Q2CUgx9z95+I64W1uKCVJKF7kcgRk1I3N1paCgCOE9qcO02y6ane/pZy40twUTTG/N1wr0YTdNc4C8fHR1dNxyfsXg6Pd1Ef9oNY8woYj0b46UsWx9FYbj0okvJeT69lJ83memf0ZKMYLtJ91aabYr3ve9l7t17QBMsq1VFVdVJkUvT9y0PHzp0uvhXe3uF69o0DYvDGzRLQ9f19O02NaQi0XmaZkHXtsmFYmDotmzWZ7h2Sx8iZ6eWgGHRLNHGYGxFjNLc29vboxt6TDCpMWhKknIhFCEfrVWqeOVm1jRNgkE8Vls26y3gWa32UVGx3W5p25abN2+KcM9yRVVVDMmBOKZGmsyuxLHBNjv2+RTs2vSMrIrdplg5lxMI6AJmnzev5o/tJv3rgL/wF/4Ct27duurduI63OZ7KIy2EgGF0gZ1fdKpc1LmjDZBJvJddxLvvUV4iW9t5Rr5Qx82GiZuv1lpUvZLeQoYMTk5OuHPnJTablls3b3Pz5i1WeythFISArSoWTcPe3h7W2uLSsFgs8GFg2Hb4oRf34H6gqWtcP+B6kVKsjKXrO0Ln2Jyec/+NN6CyRKVolgsePLxPVdcsV3ulWWd0hbHJUDINTuRBkzyWodJQSYhRGm3pxlA3NYc3j+iHjg995CMcP3hA10klndXUTk9PuXXrFs1ihVeaqqrou4HgPdkhLZB1kMUGaLcRdhleW850OVezV6Sb4eXfH0gqZcFfoB5ex3U8j/F1eaRdXgUJ53Q0KExVrlJE5VGYOXv+EdtX06w6Yy2A6AnkikoT/agBYa2lri0y/aaLdToIv/bmrVt853d+Gu8DBwcHDN6z2WyKQIx3Dqs1N2/cwCea13a7IabEvj5fE2JIbr8yVmusxrmB6BzrkxOO799jvd0QNxFlLPViwc3FHhFwySI9fyYfI0PXE4wclxCC0Mby59VKlvlSHstxDJGqrlFaY6sK5wbqqiLGCtf3c4YCsL/aQwVN3weRULgkJ2olvGE53GOjTSt9oVolkmCPKUGXkmyn9N5ddoJ8VwBjCpvlWnfhOp7neCxlbDZZNMF1x6Vjvuh2qEcFz1WpUbODAe5UU5mXOzp27T5Hpt9Cea5MRGltSyUu8IArle6tW7eKa+/v/M7vcHJygvMy/JB5uXVdE0Kg6zrcMNC1Lev1Oe1mw+npKev1msVyya1bt1mslgAYq4lhQOFp2zUnx/eprOHo1k3qpmG7WbPdbNi2G9puy8nJcdJDsIBKQu8qcYBdabQR5HP4KMJCWklyz7Qz7xx1VbFoFgQfGJwrWhR5e3Vdp4ad5f0f+AAq8ZpzhCQ5JuyIUFTFUFIBh0togYLohKRWlrm+k+lApcqXaIrl5vOSvw4mjkJI1wn3Yty5c0f0QSbx5S9/+RrP3QmlFB/+8Ieveje+qXgqeOFRdKHLYdkJjhsTkyFq8gU7fV5OFrLtxB/NL9/ZeK6qClUtRoIXrdaqqnAJ0z042BdcdrFgs9ngQ2Bv74C+7/mD3/99Qow0TcO2adg/2Ge12kNrXRLg2dlp8VyrqopmuWRvtQKEprZZt0CgQtG3PeebtUAAVU29DHR9x/rsmOXeir69SWUrtts18hE99WoJRmOURilwrsd7nbjMRm48mU8bIcM3zjliFIF08Xyr8aGnaRYMwyCVeErAVV1xfHzCYrGg3W7RMbE1GFXXLmglKJUq3zhjGex2NadsiFlFHGECLhXthVm1PGGsXCeTeXzf930ft2/fnv3t+7//+0uv4joktNb8+T//5/mn//Sf8rWvfe2qd+cbisdXulAqx5wI5onzIgSRMUBVtnDx4tptyMTokWVrchTLOOKkmsqc3WzDHoEQPbmQq+umMA2UUty9e5e23aRmUsS5pEZWVUQf8Km6tEan6bGe4B2KiLWWGzdusre3x6pZlGpUEvOA7wdOj094cO+eCPsYS9UsWB0dYOqK9each/fvsT07JThxEj4+Pub+g/sE7xJP15BxF+9lYCJ6Pw4sKJko82mYIt/8soNEvVhQZ++2vYM0ZSeVfAzS5FwtVyP9LITZqZje00ryRBV4YV6NSqNM6fy68fljwp3/N23M5fHiXTjpWmnsOr6RsNbyoz/6o3zyk5+86l35huLxE2kxLfoTpkdqlJUJM5USqJLkOm2ujcVq6vw/sbLRKGWThoAuDIUYYkruZUsEYnleBIytODw8Yn//gPV6zenpKXVd0zQNdVXjXI9zQ0nmWimWqxV102CMTZxRjdaGGzdvcnBwQFVVLJcrFNC1W7puS9tvUBr8MLA+P+Phw/vYSjQZ6mbBYrXP4c2bLFYrtuszTo5PODs9ZX22pm23bNbnnJ0c03ctw+BR2qJ0jbGjlm8sCTak/+Is4S4SrWjoe6ytsHXFZrtls92UIY+qFtGfrm8vQkIxD1irgsPL6ZPjGvNSI8G8MeskQ3GyVFEVo9JHxzzBXtYfuK52JT7+8Y9zdHR01bvxro2///f//oXvSl3XfN/3fd8V7dE3F49PuiDjvJMLpEgD5ipH52bapJLJEG+k8Fthjvld8k6zChgkOVpb0dQLmmbJYrlgsVwIfLBcslgusZVlsVjifaDvB5bLZZl6y8MIuZLUWomLxP4exlppnDnHInmM2cpS14KrqXRD6fuOmCbPgg+C/XYdp6fH2MqwOthn7/CA1f4ey9Ue+/uHrPb2QUG72bA+PxNrdIT+1rUt52cndN16nHhLFXokluXkeIwmuHqUxX1VVdS1DHJYW7NYLgq1DEAlzDpj3Pn1+YRnmCGfIznPFFqgrCLiCBnkRpsA67OKuVSxOYFPb7yXQES7Nj/XAZ/+9KevqWKPiS996UvPFMXwySpj6d8Lo7qzzCrODuNjXjrwCJZbKuLJtqbYYUkoQSCDkiiyEEzil8YQJ0vSSNMsqJuaoW9pWxH4zhXucrlk/2CfqlokuUdJAgcHosi13qyJMXL71i2qSswe9/f3McZgrfiLnZ1tcL0rUo4KjR8GNpsN3TCwf3TEav+Aqm5QMWKNYZsgDdd3tNs1wR0WyCLGKEk8VesyPbYAbFk9KCgVK4wQjDGGxWJB37Y0TcPe3grnBvpty2LRcOfOHdrNFuccwTMmYDVhnMgan+yXlokL8r6T86vK/5UVh8pPniZKNXndDLoYmSdaKUI6b3Gy4plNtT3H8alPfYo7d+5c+Pvf/tt/my5ZM13HsxVPGAO+GGFe5qBEN5A4e0H2GkglkB7ZDPKyixqrOWnvNtucc0TnSiIwxuCCyDnuH+wRkl7B0dE+bhDr9eXeihtHR6z29qhsTdMsODg45PDwBoMb6AexvhFFLst2vUlQgzSinHOs1+ciEWmqcoPwzrHdbDk7O8NUNYvVPkpXVHWNTrxYU1uMKH/z8PiEoe8Yhp623bJa7UnOioF2u8YaK44VjcZakxJgSoxJ9MZ7h3MCNehUFW+Pj9lsNtS1UMaccxDTsfEOnxJkZhmMzZg4OXvFmOfCeZYEnel6U/A37V/qZRYq2WS7F2GE9JwQymhcTv5cNqTxnMVHPvIRbt68eeHv//Af/sNrbYpnNJ7YybiMtZDj0boJplRACj0Csikua75dtm2llNCcohiCayUc1hBkid11LTFG9vaEsdDUDdYahqGHVEkuVws+8C0f4ODgkM3mPNmZO46ODqmqivPzc0IMLJcN3vdst2tOT44FMzWGuqkSRCKTXH3XsdluqRYLbNOglRDjjBGcxdYLlvsH3HjpRfb2V7ihT+7ErXyuJFy+aBYYrRi6Fu96nPf4CD5VoKEkXU/fb1MjUPQbDg8FwmiaBQeHhyyXe/TdwMnpGT6ANkZGLHxIgxFpm1MYgBGzR4m2bq6GVSRp8O7QBseTUxJopguq3ceUQgzYBHfP/YC8ctm5S1/HJP7iX/yLnJ2dXfVuvKvih3/4h696F96yeKK0I4zKYJc9Nv39UXjerprC9DEZd00No0lmzs0klTMAuYEn5o7OOdq2S/snHfyDw0PquoLoabsWpRTvf//7iTHQdcKdhcjLL9/h6OgG5+fneO/Fqt172rZls1kXXDj/672InA9uYNO2MlFWWdFV0Iqu7TDa0DQ1xmgWqxV7+wfcun07qYu5lECFAaGN6Fb0fY9WMKSJNZkSk0ZWTrwg3VprTRHmOTw64sUXX2K5XLLYk4agrWqaxUKgEKtk8i5tS6CRnTwXshElBSvWKSHqyXl/ZOw06C5E+SoolJGhEibfER8DPOfshe/+7u/mYx/72IW//+Iv/mLx/rsOiX/1r/7VVe/CWxaPhRdmfM2dmEEDebmYlp7ja4R/q7BEFWZV0/Q9drbMvAIaW+cyGVbTOwdRYwwJ61zSLJbUVYXWhhADt2/f5KWX38frr9/j6Gifk5Nj9veP+OAHP4T3ntdfv0sIUUTAtWIYOqw1HBwciLYC4EOgrir6vi+6upvNhlVqvBljqOuGbrvFB4fSSyoridcNA6vDQ2KMDH3HMgoG2ywburYv1kLOiRllXdfi4GAMzAYVJGmGgmdL4rJVRbNYsjl+QIgCtaDEnHKxt8/Z2RnOOXwcG5mlaTbhX0dItusQE2ZbVhlpWk7kKCd2SqWpOj1NavaHsVEW0xuktB+i0LaNnmzx+YybN2+yv79/1btxHe9wPHE4Ig8OXBaScM3k592qVri3oxftWBHPx4lHCENcgSeVsoqIE6Khahq8dwzOIzzWQNtuWK8blqt9rK24efMmH/iWD/HGm28Qg+KD3/JBDg72OTy8SV01PHjwgOPjB9L1XyzZbluqSpwWVqs9aV4oTd2I8th51+G9Z7vdcu/ePUlK1hQ5xqAiWM3gHd4PLBciNmO0oWpqlIZ2s8VoK46/XY9RlmgMbugAzWIh2gnGGPwwCC3NDTjXC1PE6MIOEUZFLxWsrYhRs1ztE8j4b8/56Zq27ajrmq0fxnM5vYHq3BOL6IkzZUJzy/nKeLBC3CLyVFveZtZykEXIoxkJIaQJOC3fGJ2mDK/jOp63+LrhhQvLyWmf5QIdLMywv2lHfhz/VZdtakYviyh0Er0OIWCTSAyQYIGeN998k4PDQ1586Q7Hx8fcvHGT7/iO72C5XIoT8P4+bdtydnZCVVXE6PHeFRWzpqmxSc/WOdG07bqOthUfsvV6zWKxYG9/n2bRYK1Nx0ZgBYDBO4ahxzmRnazriqpecXh0E43Y9PR9jzGKthU7oMrYciz6fsAHx9D3DEOLcy1dt6FLiT8Ej1LCTMjH5uDggGZRc/PmLXxUrFb7LFcrPvihDxVZyd3zmQV2okoEwOnfE5TzaDrXfGDFZA2JGC+c493vjbBRMg1Ng3l+K93Pfe5z/PE//scv/P1P/+k/zauvvnoFe/Tei8PDQ/76X//rfPGLX7zqXfm64qmkHY0xM4xpxrGcYHvzJgnEVE4pRfLtImkfWFQRVpkkBa2ZdGvS/+vkG6ZwIRKCLxW2UoGmaagqw2c+8xn+5//8n2y3HX/iT/y/DMPAf/tvv8be3h4vvPACx8cnbDZnBD/gXURpabhZW0HUOOeLPq3WlpDkIrfbLdbaknSzzGJeescYscndF7IWAmkYQ7NYHRBcS99ucX1HZbTgyLUt7IzaGvq+o64bmZSLHq0iVV2hokabKk2lZVsfWC6XVFXF/TfvpXFoODy6ydC3uLDh4YP76QZl8VnXIVetKjXLpAtISPhuhhnUBZiIAjfkhlqMkagV0Xu00rMqN8NSF8TM86CF0sTwfGsw1HU9ajWn+PznP89//I//8ZpK94i4ffs29+/fL79nCuj+/j5/82/+TQB+/dd/nV/4hV+4ql18qnhipZspR7tiJmOMxpRTJ9v5hiIhyCjtcrlXpAhhrGjVTtWVOUmaiMmczpREjLUYK4lnb2+fT/9f38Wrr97l85//PEdHB3zlK1/m9dfvcnZ2ytnZKcPQ0/dS5Q5Dx/n5Gev1GefnpwxDR91YqsoW2ccQHN45hr7l+Fg81YS/azFGIU47kjBlAEHYFJJshWObxWfquqGqa6pFjVKRtt3Qdxva7Vlannu6rsf7gb7v8G5I4vAGzQKl5L5ojKGqa0Kq+nPTbLlcslgsUBhu37rFMAzs76/oupbbt1+UG5X3xCSOUxTJEObCyDMhTZklvDfBBZfxqyFh8bvP1yOumw0256+//IZ9HRJnZ2fXCfcxcXx8fOnflVIsFgsWiwWf/exn+fznP/8O79nXF0+odCXxxcnAwjSy+Iw2THjz82pXlqOZiaBp2xatNS+++KKYLCY7knzhjvyHtFGliVHUyrSJQEBj0Kbhox/7JC+99DIvvvgCIcCv/dqv8b73vY9PfOJjvP7669y4cYMXXniB1157hZPjh1SVTQk+d+zF7XcYWpp6T7ixMRKDJwbH2dmZ+JEtHKvVfoEU5GYUExvBMAw6JVmdml4iEWlSU6yqG5z3NCvF9vyc9XrN/uEhMXqc72lqg/dDSty5yaUIMVnaeNDaopVUSMLLlQO8Wq3o+47gPa+9/jp9L7S3O+/7ACfHD+l7R20rGAa882XgJFeukWnDNJa+V4zZsl2qa59cLfLr883FakNU4DNZW4GKQUaFy3dGp/9Xk2mbp/6OXsd1PHUopfiTf/JP0nUd/+k//aer3p1L4ymSLsnO5hI34BhRE5Km0gpiZjRMnycVUcjirsCDBw8YhoGbN2/SNA1nZ2d0XZvonQq08Eu1FbqTVqJWppTlgx/+CC++9C10g6dtt/zGb/wGL7xwixdffBGtNevNmoODA5bLpShwWRkVlipVF20HpQ2r1Yqzs7MJtYuE93refPNNtNYcHOyxWh2IELnRY0d/UvnLY6ZgmdmIUimpMAX3tcQI/bYleofzPbXWeNdjrU54rynbmVaFIfgkgDNgrRWTzvTY+fk5r736Clorlsslbatouy33H7zOpz/9nbz2yiu8+od/yGpvNdvnaUOTfIyBkNqjeQrNez/Xw0gDKQoKLS2ff7l57pIEL45gPM/Qwnd/93fzPd/zPbO/fe/3fi//5b/8lyvao2cv3s3fryeyF4DR+nynOy2jnI5i9xui4LIEiotY8hUL+LK0FVUxWYKfp8rPWsudO++nqmq22zXr9Tot3zWmshweHfLyy+/D6gUPjx/w6it/xJtvvsnNo1vsH+7hnKNplty8eZvjk3s09ZKDgwPeeOMNtIqsVktkYCI1l5SwAhaLBX0/sFmfs16fAxS2RgiBxWJBCLBNBpSr1aIcl5wcs/JX1sidjjhrbZOFUCM4aYCmNrTrjeDJQVFXFSDJPFPonHOSXGOWvtQJG7elkr5//z4PHz5ku1mzv7+H90PS6zXcu/cG+IHf+K//lT4EPvxt30oIgbuv3SV6uXlIc0slfY08jJIq3JClN3eseZQipGERtBLtjR3sV07y9Hs0jm6DKjzg8JzSFy5LCNewwvMTT3SOyEIxl1W6Y+WqC/1HESYdmSRLFUYPrfnrffq7SZXlGzjnMdqwv3/Ai7dfomkWtEPPyekJv/e/f5eDgyNOTk5BKZbLFWhJeKvVir29PTabDU295PDwkM1mw/7+Pn23nbxXWuoajTaiTWttLInWJ4aB4LF1uVFYa1ksFoXPn6128r/Tjn5+fNrJt7YWB2BT0w0ti8UC53rqusJHR/Qa5RzGVDPsUynSjc1jTSWuEyEweCfSk6sVxw/vS0Mt4eonJw/l3ChYLBfcuXmDu3fv0vc9e6s9bt+8BUTatmUYXJKslCGVupax5+B8YiSEcgPJ1XFO/MI4ywZDcUSV5vIM6d80dKwgKtGeUNo87uv3TEb+vkyj67rrpPsUsbe391TPy9fBuzWekHSnvmjj36cVr1KJoZCaYGXqSeUfdPrX72w7YYj5kk2dea0CSsF2e0rXrRFvryjaCNry5ut3CVFRL5b0/UCzkCGG09NTbt++zfn5hmVSIjs9PWWxWDD0qjS6Smc9fZ6+69PnCeWzWqvLTSbfeAR6cNT1ohyD3cSaT7T3HmNN6dBnyEAZjYoBWx0QfaR3fZobkHTVdRux9lFisImvAMGOYwwE67BVhTGWqlklBwhS5Wo5Pj6m77ecnj5kGDwRhY+BN954E9Q4On337mvjF1NpotIYrVHR49ww+1y7AzIxRoYg0M9M3jFl3Aud2ZhgqNJkE/gBsqvI8xNaa77ru77rgiThF7/4RX75l3/5ivbqvROnp6dPfI73nq985Sv85//8n9+BPfrG4ql4uo/TRki/zH8fn5X+FTrVo9jwBb9M1eiY6LL5pEmuDmds1hs2W3HotbZGF76sLthsVQlGrLWm62RsN/uQDcNAn1gKmX6V9gIgLfFNGpZYJcaCKHzlm820M6+1TmO6trg3gNwIQhpjFnUtRWUbrK3Q1qIrizKGyjYYXSUXCItNXmJ919K25wxDmyQpG+q6YdEsWSxW1HVD0yxQ2rJYrahszWq5hzGW5V7N//25/4eIZnCuMC/ycQJGNobVWKtAebSeYN6XhDFGVMNE6Yaox/MtGmyX9Me0QltN1BMMOURUjDNY4nmIj370o3z/93//Ve/GMxvDMPArv/Ir7/ob2FN7pD1qJFgET8aKUDGvAGUDyZtrh26mVC6JVbIFH1+r9Kg/kOlZbhiEp5te65yj24qc4csvv8zZ2Rl937NaLYlRlUTpvC/L6PL+ijIIkRtFeZ/rumK5XBSpx5yg8n+X32Ak8o1CdHoiLngCGqUtWlusbagr0QduGknCVdWwaPalUagNpqqoq0WBLbSWhF3ZJWDKPpls8a7Enj0PWJyvz/nqr/83nHcYay7ap4PQvZQqjAKVR4wjF9S/iuhRquRNvuHEHQw3ymcukEJK0D76kd1AStAB9HNU6BojI+a7cffuXc7Pz69gj95b8YlPfOKJz/md3/kdfumXfukd2JtvLp6sp1u63RdFxi9PPHFe0D5JGCVfrWhUGu0t1VBpuIRkuSP/CkVNkure3p5Yjfd9quYim806TXcNaKXQCuJ0fBVR4Kpri/MdRlfEqIqFe37WcrksTbIyfZUfzctvY6QZlSAKociNn0vFCEnsxlY6JW3NMAw0zUqaaSoPH2gEWha9BWNy7WgIUY6DweAze0AprFZYDfv7+2Il5D3HDx6y3W546cWXeP3114hBHJAzFzoCQYlGbvkcUY65Tk3G6enK8ICHbBIyDsDEicZxiJPni9GohmKAmc9pVKCsIfpnP+saY7hz5w537tzhB37gBy48/nf+zt/hF3/xF6+vLoLmAAAgAElEQVRgz95b8d//+3+/6l14y+KxSVcSoPw8nUjKUcY+L0ms42OxcDsLRXNadRUIQ0RetJaZfJ27MkoTAlKpescQInXCf21Khi+88IKwFLThxo0jXrv7Ci/cfoG+F3zSpgSWBz26rhOLnv190ZbwgUVTzwTSjTFst9sCTWRmQZ5Gy59D68Rd1RotpR8xkmx3As5FlBpQ1sggRrXAJmdg0nLeeY9O7ITgO2FEKKFgKUySRRwnyvKx01oTgysQR1VXDMOAtRV1mnjzLqAjpUKPId0MJvoKGZ8lJ0Q1PzfyHEVAuLomjiuRGaNFCcavVJKRLEczn3dkVZRf8+5l9XzTobXmwx/+MIeHh/zZP/tnL33O1772NV577bV3eM/ee/E93/M9T6SAbbdb3nzzzXdoj765eILK2IjpZuvw3YsxL1fLdaemiEWufJh15HdjOoU2ymrP8eTgxZpcGaF6yQiuJL/tdpsaYBVd3+H9wHqTZBuNpa4qrJVBhTx1ljFYwY4pVawkVoUxkqSqqpoNRUDmLfvU+Bs/r1IarQx5xDmEfAyFilWlyboQDcZYXBppBuj7NlXUPnm2SeNJG4MKAe+zaaTCe9A6D5xk2yRF3TR0fZ+aYSrdiLTQ9jK0k0evJ+cwU7es0gIBkbnBYYSWEBKg1pqYmnRT7HeK75cR4vG0FmaDQBqzYvmZC6UUn/rUpx6ZbAF+67d+iy996Uvv+pHVd0P8m3/zbx4vMwq8+uqrfPnLX36H9uibi6fSXpAL9uLfS5Wal9RjriRPbeXRUKESTZafaroMlxdKZRzK71oblDEMzuFCxHshJnknPmX7B4cYYzg5OUk2PTXnZ2sqW+OdxzsnoHUlPmmRkHRWzGiAiUAPfd+VBJaHD7Km7kyzQElVrrXADRlakPJ2Qp1TeRIv3TSCx3stFWIwuDQ+ncdzMydXRN8pmHMkpPeUm0yMuZmXWldKqti6rtlsNsQYOT05FQaFVrzw0h3uvvqKrDjy2G46FzFObqz5TOQBByhiRTKllqCHGNHGUKx31CSB56fnfJuq56JopijPlZe++/V0X375Zd7//vd/Xa/RWl8KJUzjn//zf86//tf/+pvZtet4j8YThiNynpRL8mITbJZn03JVzRJvAg5LNRxL4lUo7WevHv/VoCxKW1BKBFsSrmytJQJt20IUpaG+79Fas7+/z/HDh+zvHTEMLlWsstzVCQKQ6z7pDyhdEqiI39QFRpEQ7moWOo9RxoSNluQpn8Oj4oj1yrCEA0z5TCF4lI+4GInGE4JLmK0VuyGVOMMKsYFPNwOtkrbujMlhSxWulLmEdqXwrqdrN1hruHnzFm/cfZ0wdOWkqnyuUqbNMEMkopUmxCBTZUoxMrEneEFewZBPd77pyF8zdkw65yF9LYQqloeL391x+/ZtPv7xj/Nt3/ZtfPSjH31Lt/3Vr371XTui+m6LH//xHy8rzWclnurTzIgIOzSyIlJTRklVWWLmCxCmEMN0y5JU5mFGSlYyM5ySnYP3EGMRFs8VqzABLFVdi+pXlMpsajeklUmVNLNxW5mQg8WiSZivDC9EItt2TWUXSdhGKFMxVbVaS6soxlBUxmLUaZQ4wxUKCFKpJn3hiKdSNWCK0lRIFb5ODbsQAyZDFUqOdD7uu8v6jFWfn5/Ttl061oIte+cTde0SvD2fx8k5CcnRoSADSqARM95JS8rNxesE1Gc3NJN8nBL9u3lE8+joiM985jO89NJL/LE/9sfe8u1/9atf5W/9rb/Fv/23//Yt3/azGD/5kz/5/CXdKY67SxvLF7zRkjylATYmXZUaK7vKZNJUc8Swu7xMfF90avUwuZDlyvXOoyv5PVe8OXEppdJwgUATVbK4yfsvS+6RY5uTZX48J845JUymwkTPVqGC/F1cbl06hJkyp0rDzftBKusoeKgPHqMU2oiimc7L+DzpZUZjTqXAKBn91aYiD5rIe3icU+Uz5+PqnOPk5JgbR4cMwzhdd36+LjegPEV2MeVN3CJ8HLm4TJtsF74Z5dSMcEK8JPHKmPHkvvGujYODA/7Mn/kzfMd3fMfbsv3f/M3f5G/8jb/Bv/t3/+5t2f51vDfiCW7AYzdfqTj5mUSkr0qzR2tN9IHImKBHrQXwycGg0M3QaUYt6TSki9UHBUZJlacNcdoEUhRjRVAYrdlutywWYrOe6V15ui1f5NrkijRhoelGksd9cxIeBWfEF622Fd4FgvEsl8s0KisfyCuP8mCK1fxUR9ajtEJHmRizuhpZGdpOxghiElLXiQOrCGkJnsVyYpBxWdG58HivChaqtFTc3nliVHRDz+///v+m71uGYSBG2Gw2SSGMGaaaul1yvlIlGnL2nDTBVPr5suq03EbV5Bcl3Ahyg7Vk23mlDe+OitcYww/90A8BIhV6mWfZWxG//du/zU/8xE/wH/7Df3hbtn8d7514AqZrRngg+FQNupRUDdpYtNJpNFWL/1XiamqtMdaQSfg+VAmXFLUsotiUh9xsyQleifpXdj3IYjuJb4ROFaH3oraVNRNGjYSsY1ulqjkJ7UwaXLkrnxkIU6ihaRoGJ/hnCAGrKxRSURtjMEoaXpmOZerJYIiSilZrlexodBrAcCyXMj7snYh+ayI+DAkeMYA8N+pxrivjwzatJJQesfX8GVTi7QYvxpZvvP6aOB+vT8VQ0w3F7DJXy5FxODs3u0qDbQrdppj+nif5ynZ08f0pGHBUSTQnJfOo9KzIfTck2x/7sR8DZP+//du//W17n1dffZW//Jf/Mvfv3+dXf/VX37b3eRbjH//jf/xUegv379/n3//7f/8O7NFbE4+HF7QWo8QYaZLweIwVSkuVaZKgeFOL/XlwQ9FZlZfLpa21iJ24YUiDDrKs72NLdBGUSU22IAnX2FJ9OicXtEGWvLmhVuxrokpVnQi4HBwc0XU9IEI9MTiWxqSmmRIWwyRpFUw10ciGYZCGktZ4F6gXkgxRitXekqF3BV+Oei7qHmJI2mqjgaQk1ZFXq7VIODZNVfYpy0IWCCStHASiiKKrG03SEbYzKh/pszx8+JA37r5Gu9nygQ98gLuv/SGKSPChVPZT1ohSKpssj0kwc7nY+XuMJdlmGGImPTlhh43pVJK8RuEnsMP0u3EZffCdireros1xfn7OF77wBdq2vZZs/Abje7/3e58Kz91ut7zyyivvwB69NfHYT9QslmUM11pL0yxKkybTnJaLFcbK8nnoOpTKRoiC5+bXa22wVipS55ws5a0ngIjLBEAZrK1K0p1rvkpCU0qjjMZoK64QvePoxmFaFU8qTu+RnrvCuYAx8ybgVDth1KwVStlqtaJt28Ttlb+bSnQctJaKeIRO4phQ1ahrMCYoyDbuWjUCE0SXYBhpsAFlGi4nspyI0ZNBgrT0F5hiFB53zjEMXSLa++Kh5mKYYaxj00tWJShp3GWebqag7SbDSMLqQyysjby9AiHE8W+pvSrHbuc7NUvW77H40pe+9NTTY845fvM3f/Nt3qNnN37+53+eF1544ap3422JxybdxWKVKhxJVHurQ5TR9P0gOKqtqCqZrhqGDj9xFciJaJq0VdIIEFeEQJ8q1BiDLEG1wdg6UaJG80qljDSUoheFqxjRwXN8/IAbN6R67bqOumnwfqBttzJooFOVHDxT94ssdKO0NL5UWgtn+tVms8Y7UI3Cx2FC3fLivpAoZ7IUlypYoIDEUggK2WhM+OuYTPu+p26EN2xtVfYnJ1BRFItpAANU1BirRv4uAa2yrbpO22x5/Y3XOT87pW23/J//83+obA0uYqtK6u5cnWZiX2JAlCnDafItjBNhLeSGZjQjVquUIvrEw9aZvTLHbjMzImPQu4M17/b4uZ/7Of7e3/t75fe7d++yXq+vboeeo/jkJz/5zLEWcjz2Uy2XS/KwgFKKw4NbRCVJtKkXaTy3pe86urbF9X1JuN772VBB3/flgnPO0fWtDDD4gCdgqopFZYu7bJleSktyIeSDDWk5bg1939O2W7quZblc0XXdZOmLiMwkSKFoFZQTGUt1nEdjgaRnq0SHd2jlcRXHVXfRcJDps0zfGqGECUVNi9tFDGCsFYWxBLlUlSH4iItuhjNPk5IxtgxfqFRJG20wWYgdcSzetlvW61OsFfra2dkZm03LaikOFmIh5GbbLnDDJRXpjFIGIwySjlJZgUg2H8eBpX4v28zbysdnl274bo5/+S//JX/lr/yVp5ITvI7r+HriiY00rTTBC1vBucBi1RTqUdttOT87ZWjbZI8ulKvMq50ul/N/4gYx4PxA5wL4AEZL0ymA9lJJxhiSfsFUONtDWnavVqtSdWw2G5bLParkHyZVYkCnxpTCoHXEWE3Eo5RGG0lgMvXlsbbGGltW4y64NCac9A5iLPujNZgyLBtnnxFGoeqmaVBKU1V1GR02JunsGktVGZzrC5QgTcFR21cp8VzLjTaUJmKISpXz4r3nj/7oD/ja//otTk8fJAt4xwsv3GZ99jDhsYknEsLspgCZjSYwSIYJ5glSqumsEibNO+RYkGAHGV8bhy6g8HoVFyGGd3P86q/+Kl/4whfo+774913HOxtf+cpX+MhHPnLVu/G2xeNFzENkSB32EAKb7RpSswcF52cndNs1wUtzKfuGwWg/ki/g3OyS57nUsJJlftYEyEnJpySPUsnZQZbjVWXRyDK4rutU6bZs1mcslnvcSEk3hEBVG2LUaakuU1beBXQSvgkeFDFNrJmUcGOBDlQAH32BIiBV30aSXkxW60mRoHzOXJnnat/asUGW4RZTWSHKaYWthepGOXapiVcwXnlfwboztU6OwRAC63VbVhTHxyf4oaPvWz7wgQ+x3pwx+A5jNM6N1X6BGdLyP+a8OaMppPM46ZLlSbOoYpnumyLFOXErFF6PThKPGvd9N1S8p6envPzyy+X3EAJ931/hHl3H4eHhE7UWcty7d4+f/dmffXt36C2OJ6qMTW3VjXFs23VphHXtluj6kkx3/4V54yQn5ayhMEqrJPzQqEnCmi+3ReYwYpcVzvmSmEIYWK/X3Lw9JntjVREfN0oXKUStTRrkGO10ckWZbRBiGiQgOJTJzTypUuu6JtPlAhGrTRK4EYaCnuCkeSgjwyy58RZCwE6S85SxMI9cPYveQggDKlRp+EKVZb4bBn77t34L73peeulF7r/5Ol235cHxCV3vCGFTqvCL75EpXZNfIAmMJ9bJDoWsnLFMQSs/z3Z9Qj17dGK96mZa13XcunVrpt52He+tyNfYeykem3Tbti14ozjr9gxeaGHr9ZowOHTiHeVKbppcpxfVMAzzx9Plm5/T+cTfRWOtkRFbNUo4hpgTbSz7lHHUvK/OSTWc8cuc7CUBz5fVOTJHN8SRPaCVhoShajsKhiulS7Up+gtg7GRkdgIv5KW8mUyaxRjF6DK5SIyVsSuVaH4u5NcmF97iQBFxLmlBOM9me85yteC117a8cfcu280xMSoePnzIzaN9Th4+RBNnDsOzCnM62FD+pOYshUIpU2MFPPmsOeL0+VGw65hm20b22SX7cIXxXrtgn/X4er8XV33j/kbisUk3c2611mw2G/b29ooW7TD0JemOUoZjdbubdNEyOeW8S+vQiI/j80kNr+12k/Rga6oq45lgtHB5jRl5rU0jWgmr1arspw8OQ03XdVKdJoaA8HHjbJmdYZMYI1VlisKW0qokzUDAKpu2PxEXLw3GEcfM2516pSnl0/HxkMTLbdXgXJhM0TUMoS0OwCN/Nw1vqPw+JHzb4J3DDT1vvPEGxw8fcL5eMyRRm5BGlg8ODjg9OcEkCp1CuLlx9r0es25JoBERGNcKJtS9qUg5TBgRatxWwYwJAtUERSYEj6sWM/u+XMd15PjlX/5lvvM7v/OpnntycsI/+Af/4G3eo7c+nph0R1GYyHq9JipwXQ8+Qgz4MB0Rlpgm3dzF98Hjoy8i2UZprJfpJY94io2DFSYlkNGxoW4W+MyMSE2cqqqSq66jH1q27bowLnLzrV40GG0YBldoYzlp5GQiyVIwWlk1G4wWOlRtFhgzbk/2XQY4gFl1ugtdymcJs5vPFIKY4t/zYYE0WJDxZBXQqsLoCq00LgZUUkZ7cO8ev/t7X8O5jhhcqtwie8s9GWCZ6Olm+CSiRtnGaZmbBymUAju36JlWIOMqYmy2kbgNcqMw5bNPj8mURnidcK/jm433Kvb+RI+03JgKIbBpt5L4gicMfcJUA8MwJIL+QN/3M6qY1rpUtCbRvjKOCRQa0m5kTNQ5wTvrqsGY0QDSWkuXtBO893TbLX4Y9zVb7Ii9tTj55iQ7tUzP+yVNIo3RaXzYZJcILmmUpemwxFKw1mCMsA4iYVbxkz5lHpvt3YCxiaY1qYjHCnxKQ5Oq2pgkS6k0QQkLI/hA27dEHB/+4IeSoE36fCj29le07aYk94LnJjrtLlZbHhonhss5nC/5VGo2jsMl0y1pPSujL0Q+P/mYX8d1fCOx2Wz46Z/+6avejW8oHlvpTpOnCGzD4HogFs+rXM1OK5cpPul3Lu1KKVwIKKMF7YuKmB0K0oUYkviLtVXCd6Vayz/rhB/v7e1BSihKwXa7pl40LFcrSXhBNBhICHJlG6qqLhXtbnNpmoxjCCirMFoq2KlLrlj0qKQDMVanamzfp+eJ/GNIVbypJFG1bYs1NSHkCTaNikJCCzEI/9eYQsKCPMaMTMQFGTler9e0Xct6vZaJwXpB13swcPf11znaX+KDK/BPpoddaHwxoYLFzCbJgw27zx0dK6afe16l50GJcdsw3oTkmL+3BiWu4+2PF198kaZprno33vZ4Inuh0LxiwGqD0rEsOaedwylXNVeySk2XseC8p5o0VFARlcS7dbrYXeKU5qVofg9JhmMzKPuCKaVoEqvAaE3ftvTLJRqFXS4haSFoxaQhBhBKkoeRWzv6wEmiyxQzrUXCMnfvVdI7zLmm0Kmi2P/IdJk02xSCjeooAuhA4h2LKLnSiqh9SorJATg19ApXN400kya/3CBTeGenp2kYYsN2e04IjuVqn6aSasCYCoJoEKNU0iiW/cv7vRtCC5ucp/S8keebjUpj+nm6LUm6+eY15Wzn7WVq3OOYDdfx/MXP/MzP8NnPfvaJz4sxcv/+/Xdgj96eeKo5O9EkULjgMZc4uE4x0pwkC3bpQ1GjMlompgyREBXRRbwaCDEWmEFrjV5UEwaAwg0DKEVlbXGZresaGEdoMxcYJRoQlR6FbHIDLEwU0GJEFNKS/i2MFXpOwColugw9yJI6jNBDHK3lheObDBuD0Lycd2ijMNoSvaf3W/RihVYU9+KyKkiwQowRTfZaE682KbUF8ohKE5XCOc+DBw84Pz9ls1nTrjdp2V7Rth3gUMqyXC7YbjfEpBlRKsw4nrvppFhRqpw8nn3eBFZQ5dzIjXYc5BhDiQW9Gt8v35TltRFFvvldx3V8fTEMAz/zMz9z1bvxDcdjMd3CZU3VavbImtLCdiuanIAzTjnl6YKsWr0S5oJQsGR2KYjdQnlt13W4pFrmvMg3RkZcVTzRGqqqoqrrgvNqBdE76rqacHGz2tlIG5PnVzO+7PTnDD2MTIeKyMj/FR1aScsZ+5Zpu4RVRw/IIEgIAecdIbr0uXpCGGbDJMLSEI3igJIkbITJoFPSJVW/MSj63nF6+hDneurKpBHgvHy3AkokxbY8fDK9OV5+whOkMAHaR/hFlXN9MZIDcpxs+3EJNc7hhuu4jifF7/7u75aff+/3fu8K9+Sbj6ewYB+XzVopotYi0ZiSrN+hiWm1c3HqPHU2UsNgXHb74GfPn8IV2cFXoYRu5jxNU5eleU6eMS3bMycWPNvNGUbP3XyzpKQxVRmvVSpeaOyMjIZcCUrpZyYd/5hGYjPXWG4aEJWsCrQWkXbBUjXaJEdlBohirjltmgmvNULSziU11STZQRI6SEMHga5r6botp2enbLZbnOvT8XMs6pqhFyZB27azm+PuzzlmegmTJtoI7SQKWP5MagojpNfJpEQ5RvIe0ogkTvnVRmQ5r0vd60jx2c9+9rEGoD/3cz/Hj/7ojxJC4F/8i3/xDu7ZWx9PhBfy8jJ7g+Vkm8d+fQjlIs1WPWqaeLVMODlyQ250Fg4TXDFfkDFG0RYQaTMAcW9QA0orujYwJDx3GIZSKeeluFKKdtvhHcSouHHjBsMgqmhSueaKd9xHredNtDHpSioKzhO1ScI5whfOOgS5ioRI9IGAwADEiAqBaET7oU5Vq9Kyn95FVKqE5eaS3jvhpjondg2kalcafCKEfn5+xnazwRrLomnw3YLg13IjspZNDKBgGKY+dWOSLW2vmAQwd5JwjnmyHv+286zJ83e/QOPUmtj2jDe267iOHD/xEz/BZz7zmcc+55/9s3/2Du3N2xtP4OmKoHdOVpcNPUi1ly7s1DjTBd9Ltt9KFfW/GKNYo++MpE6nuZSSytZrT0iuO1MR7TxlZq3FDQNVVRVBGUneUi33naHrmqJ/kFONuFfoCSNh5BNnSlkZB0b0GmIIIpgTYqr8I1GPNurRx8Q+iOhAafpZOyYXrSx57na0E4r4IEI3UnmPZpxJP34qrUMEvHOcnh5z796brM/P2W625RhmWCSvLpQSuGEYss7xpBJFGphKdi4J3swbbNMG6fRcZdhmmqxLxcskDavMTyuzaeU9ruM6niZ+5Vd+5ZmCoh5PGQsuVZ9j91mFOKl8VCE1lYs5xskVF8dEO2vcCIxg9UgRm17YGQNVg/ivmdTI2eXf5tfUdT2hrmXtXMvgOrbtOYtFU4YtYEyu+b1y9VsaaCnxkit3rUqlWZbVO6R/ee95VSlV+LzyVyqmceWa4CPGkMwg842LfETlfYoeLzDBzrfbjYj4BBEwd8N4PLI/mlDFZB9nlWXqo+V8SLLXUXGuhTFNqLsCJLvVc3n+zt/k7caG2wjXXMd1PF380i/90lXvwlsaT5B2lAvLOSecUa0KtWv+XxDql9bFAma8MyXKWYiluhXeLeKppudL2FzReudQKvF6PUVwPCfDTP8yZoo7KqwVlkHeVtd2bDZrQojs7e2JbxtJGMfM8c2pHu68iShUKykNJTFqrYh+PEa7komSrHWBHxRZOD0zJQaMqWYTf9mE0xgx1yw3ohjF6CEdy2EY6LoWowX3ripL8AMhyGfZbrcp6Y6NyQvnNv9/SuYlWT4COtjFgS9WHok+dwlqMJq1K9HQuIYYrmMSf+7P/bmnooo9K/HEiTSVOuZGJ+PJ3S54FAghl07zikglzuqksRaTdY8xoMZt7V6A+X2DD2Ln4+V9gvPEEEQDwVY0zVI+iL5I/yKCHxzn5+dst2sZRU6cY1QSOlcXE8CU3qRUEg3XhsjocpwpXbs4cPn8ilGAXAk9Le5gmrkhaLQkIx9EyyIGx8wFmXyPkkbgen3OvXtv8uDBAzbn50lnQmhqxlRJXMiQ51V24aD8vyymE1DS9Ns5B7kqlWNzCeaboJIYxp+ZLnTSL7m/FkIguzLv7td1PL/xp/7Un+LjH//4pY/9/M///DM3Mv54Pd04TmypEB/JAippIY7KYXMMlgsJKoQgS3Y9shYyTzWzJoTDKhe8jiLyErxHWcNiuUdV1QVayCPJMfrCVogxEpwnmAHvHJv1uWCcWmG1po8ypFDX9axSnVbdWV0sAymSXE3SfpkLtcOIcecpu1xRDsOAyZU68yQ/DAO2rgje4YlobREt4Oy6m5b9qRoWl1+H0RqrBW/OfN8Mj+x+UXex2WKhk28DITXKcpKcv7rgw9Pvxiyj5m9HlAYmCeKPISalsVJbA3NB9eu4jkfF//gf/+OZuzk/9ls/nZOHeVVYkg2JexsCzvuC3e0ut8fJLj0mhMwkCHOn2UxVyu+ldSQQiijO0Pes1+dsNhuc9wzDUCrHTCHTWtO2WzCKGDxu6Nhu1mzOzujbrQxcMA5XiHLaUCzdc0w/czaqLDeYONfyLF+OKDhmtkXPjT/nhKcrzx3lLmFUAYuJdTBtR+WkmG8EOcEKLziUzzGd/BpvbikJMk/08+ZYypAJaph+limMNMVxM6/64vMmhygoFAZTblnMtnXVF1Nd1/zCL/zCle7D8x5/6S/9JX74h3/4qnfjHY0nVroZL9WMF/Zc2FwnHzIZYw1AXtfmJBt9kKmznFzjmKg1Ug35CW+zJPQQiEooWFqP2gAqwtD3uKbn/OyMqqpomiZVeSJAk5tuef9UFMnDfhC3iawSpgBV18lGR7DpfKMROABiCIR8I/FBluI+zNwgpseMGIg+EI1BVxUQcG6Qql2NDhuZVWBMOkZKxoLHZJablULZ8wH63nH/zTd45ZU/5OTkhK5tZ8m2bVupWoGo50n2URjqpH1Wylx5rr7wmnxsghdjzHldnGGkkSEhIkDvzlBK8bnPfe6qd+O5jg9/+MO8733vu/Sxf/SP/tF7VknscfFUY8C5+jNaEtg00eRV5tSSPA8FVFqmobQVz7OinoUk2spYoREZjYpjMs+DCdK3ktcMw4BJtjohBIIbkhatjPv2fY8xhnbbc+PmIbYSLNXkJX5K4sPQs9mC94H9fWEuCLYrSTuXanmirrIZ8nB41wt7IgYRMS9shkllGDwKuVkExPqlrmt88MSQKt6hY7FaopTgsN4HqqopVfcYU0hGfhcjyjXWalaLhnZ9MpNKDOlGBnJzQk0ToTAi5HBcTMCip5AVziJlYCPF9GYkzC+xuR9fHwqUNN/uHFO+jut4mrh3796Vr4bejngsvDBd7oNUplN61xSDhfnFpbXwTYfg6ZNweaFWAS4GOpcm23aYA5LwxElCKmBKdZWX5ArYbrc8ePAApVTBdutazCCNzaaTwhjINjd4TxiGJPfo6fuuNK2ytY5PkEX+fAVHzT5vflwih0ugEcFAR1aDbDNpBaek5PpBlNvUyJSY4sJqJ0EqIjF6Qow8eHCfN16/y4oF7pEAABfLSURBVMOHD4oG8Qw6UNIUm9K/dmP2XuW1edhD9j8yaeYlHCl/9lGkYQ5VTPHwR73vSLF7thok13EdTxNP7GQ86sIYOZcXn1eUpVKjSilVcNecjI3WwmBgTDpT/uzYkIoMSSfXJOucEAJD0nWo69Fp11pLiI7tdk0IAWuMWJAbgzImJV+NSe+VtYLbtqVtN3SdjNO6VNECBWKok+XPtBE1vUlcgBjSeHFmdNRVLZq3UyujiQZBfn0W49k9HjHKUMfp6Rk+RFZ7eyyXTXHSKMmMxHQY228XqvHp3y5EzDoKkRhdek2uYC1S4hpg1NRNWyRLSE6hjGnynSbcx+7DdVzHMxyPhRf6fkw+hkklFSf8Vi86uzFNUpVkka5vHUkC3ONAxW6SkYwSMUolDFe4uJVOFjqATTSzIrQTIqEfePjwIV3XcXBwwIMHD7hz5w7eB4ZedGSXqxqFcHRjdETf4V1g6DYENwC+dP1BYIymadBKsVqtypK67Qfquk5Y8agIJjcBjx96gUMSe0BrK+wMxko5OyqoZPeTKWWiBaFnCWlspuXkpIQu5zqiCxw/PObs/AzXD5fitVOWQN6GvJdJf5P0LBW5mr+w3BBsoiDIAzH61OiLKKoEL+QKfdJES9+RvGnB+idcsjj+/Tqu47L46Z/+ac7Pz696N96WeGKlm7v6OSEUFa2kvQAZe02sg5CGPbPVeRbFKd300VAy05u0McVpd+QaRZx3xTIoV8sw57gSYxE+Pjw8JITASy+9xGq54uDgoFSLzrmUO8SNoa4NdZ2tc7wkTu8ozZ8YC5adm3JTKlt+zPvk+4YvVvQyykuBKvLnNslOHkhUudFfLn+mC5NfWqURXZUm0dacnDxktVywWi7LhN6jsK/dY533O2Zq1yQylEI5qyoTNUbIAFLydexaEU23k7cQYywmltPPlLd11XF0dMQrr7xy1bvxXMZf+2t/jb/7d//upY/tsoiepXhspZs1a3fdfedjuwkGmDRRIlGW/8aksftISBoJuVqFOZ44JmOpfDPbAVRiGxgRZ5ks45VSoDTHx8elKj07O8N7z97eHraqODw8YLW3j9GiaBYiKCsNOq1HxbJhGKibirqp0Uoz+AHjNFVV4ZxjsVjMKG9T006jNVGLUHpOJN45TLIcyvi3jP9WZd8lkXmqav68LHmptfCYpS6NuADHJ6ccP7zPyfExm/V5Gnu+DEYYMeEiKD95X5mQ04lbPceOp7zbC0k1RlAmNd0myT41+ohxZz92K1qVHJ31haR/VXGZNf11vP0xhc+ep3iiXY+1VsTDMwU1jlq6OWR1OS4fY4iz5lIMgYAkIs/oBlsOeGrUKBK0kA0qE91MhdQpVzI5lceBvfeEvidaS7ttaWxFvVwUr7Z60WCsplk01HXNMPQQhcGgolTnwXkqU2GU3DjcEGgahQkKFaDvWlRKmNm3rVTxMWCNxWCIupJqHhk4sJVJ1WtFxjtJn322vlDJ062p03JcbiSCGVuyP9vgA922pV23iC6mQAO5kTfn3TKl+V5gWRS8PPrJcAOIcuM4WDJ9/mSH02vkDXRa3Qi4n1gNZLqb/CkoRcQToxmNLssX5zqu4/mKJ1LGykU9oXPljvwUp0XPmQ7l9anJlJe5l97ZlBK9WT+3dpHtSSU5nbbKdC5JvAONEW7rMAwc3rwBStH1PYvBcX62QSvLchlZLhf0w1b2RY8OZN556rpKswFKqGnW4tPYqoJCT1OFFaDKaG9QoO1kmZ8wzqx+lqlfGU/NMEKGEsTUMmkDAzZVuTpR9EKqiLt+w5v3XuXNe3fpurZUlVPcFnLzL+lbqDF55pg2QDMmq5QSuUnlLz2PuxXv7vvups8Yx39DHvjYqYKfxyrnOq7jsUk3V1DOOawaO/X5sYLxpQsqc1fzxTjt6pvEYphRm8qVmRotWlHpaqbZSxw1fHPSz9brQglzJVGHELj3+huYquJbPvgt5b3y8tEHT2Vr2aZ3WG0gBBSB4D06TZz1bgAtUMd0Ce2cw1hhQRC9VOWAqeSzEaWaLzzjfNNImCow255W6XUqlONpzZx+ppTo0BJigl3EYn33OM4nANPgQi41HxcqFtx2mgMvVM6XvTRVzGEyVDGNGBVBJV3gCYQRd24W13Ed08jC+89qPLHSLS4Nmf40wTWL1U5qvgjKMGoWWGsLFDFdAudqdU4PU3jnxtHgSWTsNP+9bdsy7ut9ICBYad/37O/vs1gsePDmPTbbLbdu3abrOqqqoq5qQPRvta2yYBh91+P8AN5QxYgxmkDAMGruFhqcA2NlSe21MB90mpiLIaISBCGvE+cKo8VCPUxWCtMIIaDCRfeK2c9RxNz39g5YLfc40w+k3ziR2mQ8C4jnzm61mhPrhBNM1kOOxFTV71bF85OBcK6z4kaBGiZPEDpLuhEJDCFiN1Kx757/67iOafzsz/4sx8fHV70bb1s8Udpx2kTTWi7+gvcRJ3ieQJVKKUic2DgZHJCl+nxZmilX3nsqbfBx1KQtlZtKTbUY0BGMGuldMUaMliV8cB5bG9Zn5yilWB7ss1zusVwu2d/fZ7VaASJWUzUkviwQA4FApS1Vaor5EGlqgQUyHlsbNUnAfsbeIAjEkI/ZWCFTFNiCD9hFjQKMrtBmdCCOMaLSjUulRlqM0kDTSqb5usFxenZGPwyFTiZV7xjzBCkVr1jsRGLIlfBIQcvPUgWnZTdPT7aWRXdy3k2NOBKrYQo15WeHSYMvitFn9B5HhiUe8+W7jut4RuOpxoBzxEnVAjKhlnm0avKcDEnkJLtbLeUqJ1fR1hiIYKtKSP15+Z2w41lTJ7ntzmhj6bmDG6hsxXa7Zbm/lwYnLF3XYRItzdg8iGHEgiiI71re5yZG6qpCRUVVVzMsWpk0zlwSDpAbUpMEPcO+iYnXqsp+5sRUKHN6rKgLLKGnGUnR9x3n63OOHz4UoR83p1zNj3EesMjDHHN2Q9rrscqdkGZH7dtd1oJQvabnIjt05BXO+Nxc4Y7fhxjBI5OJwYufnPc773Edz0289NJLfOu3futV78aVxBONKedDAJPGSfqbCz7RjhRRjdKOojk7qoWFGAs0UbiquxhvCAVeyO8xhSVkFHjElGOMLJdLcZFQDkLEh6GIi6/Xa5qm4caNw/L6uqqIhJwiISiikc9a14tidZNx4vy6qCTpWJMw4WLnniABpQmzJCJ8Y2N0EW83WQlMx/KzncARMxyX8dhkXnDfinD5smk41YY+XLL8vxBjAoRJxQrlp5gw2RHOGMkoM2y3NMfEmWNc8YwpekzK4++7K6MYAspHuSFdx3MZP/iDP8iP//iPX/VuXEk8NuluNltWq+XkootF6FolUqp08JOEoQJSxZZJ8SqzBCbVXybh65Jwk+hMqu6CD0lHl1IhZqzYJlGa3FhrmkZszr28f27eCU57irWGo6MDDg4OUnKzaE0RuvEDbLctdd1QN4ty01BKJxUxuXHYuhIxd2OIQQRwMm5rTJPobE4qx2z/Yyx6MhABYK28HpjdWMpxyrZABWaIeO84Pzvl3r03OD05Tk4Y0lCbcnRH6CCvSHIVO6k8yzjYxWp2WsWSt2JUonmNkIRKVDXUxGi0LHXGZB1KlRuLxkaGZmKInJ6ePe7rdx3X8UzGYyfSNtt2VnUKSpi61aUiS3P+Ol/IkyoxbWe3CsqCNdGLBGJwTiriCATx69IoTE7ocT4+HGOk73u895ydneGcR2mD81481Yxh6Dq0gu1mzenJCZv1Gu9DqrQrERS3lqgUtlpSNytsVZfPpfWYlPKSP0RJHBlysDYPMBiUNpiqwiatByEPmFLxTZtnGZkYfdmsOFGUW4ws95XQQhj6nuMH93lw/w0ePLjHdnOOH/oR1silpijdSFJPLg4on9gJeYAlZDzgQpKdRhmEAYKKBKUIUf6LQRed3myWqQLgk95v0sbIfOm+7+m6jq5t6dqOdrtlu91y7/7DJ3w935lYrVZ88YtfvOrduI7nJB5b6X7iE5/g+OH9GQyg8wRaFtWOI+0nZgghYZUzLHZn29poSRAxouKoQ1AadSX5afROgijygsxdguu6TsLenrZtaVZL+r5ns9nIkEfdsFqt0FphtTgc26pmuVwVDd6p7U+mek1vFjHKEjm7EefufYxRWAxqxL6VTv+qqXhNRCtbBjyMthhTlepYBh+QpJm2NfQD5+s15+szhqGn7zqcT7KKEYSNoMp+ZI84VCSGVAFrJnVt0lxQj6KGqfK5BLYVjFhgBXksJM1gEAaFT9+FXOFmMaHccJz/6wgBPvaxjz3h6/nOxMHBAT/5kz/JP/kn/+Sqd+W5iE984hN84QtfuOrduLJ4bKX7Uz/1U5OONLJE9UG69bnBNcECZUk9Gj/u0p8uqGaREoFOiVrrYgU+1YjN2wDKkMaUfpYfz9SurHmw2Wxo25au6+iHgbZtOTs7Z7vd4lMTqGkalqsVzWKBtdUs4e5OcuXHxjHoSUNJZUgkf06ISboxHTxJ6KYWgRtlC6ygdYWxNcbWxY9u3EZMFWNH33fi/Ot7QpCEWirOOCbQqGJqSCqKD1oGaRlpXjO8dQYFQAwQfPo3MEucLgZc8AxOdDn6oaftO9quY9u2bFMlu9lsyjnIf5P/Wrbblp/6qf/v6/7Cvl1x69Yt/upf/atXvRvPRXzqU5/iR37kR656N64sHpt0f/AHfzAti9PwgICzZEp8yAKCE1wx460zfYb8eJy47CbO7zRZxulrifgoFkDTBJwr6CwZmTUQYhRhcmE1aCpriD6gEXPLPIHmkj25VhatLJWtWTSiq1BVCXKIY4Ms/v/tXb+PFMkV/qqqu+cH7GhA5jKfCFaWcXqO8UnESMiBJQuBEIE5+A9syTmBDRLBEV1+PieIk3WyLFvmctsJGTLODXhv92Znuqu6qhy8elXVs2tAtpixlvpWo92dnemp7en56tWr730PQJ31UJNSom5qOO+gjY6RPudikxKBjHWUyqVaaQKK50xKyCqoKaSCkqEnmxRBLQCY3qBtl9kEkKJUWtdz4iekehxNhunetLlFv62XDIfncITLBAxSqNjsPbDWhglAw2iNrqNJretaIteWiLVtO3SdRtfp+LPWBlqb2GLo8uXL/9VF+y4wn89x8+bNbQ+j4D3AG70X9vf3sbNzOmyEJWmRgoT14QPtcw1rIltWGkTzllypEKItfh2pkl3igJSySJPLd3OZGKcExuMxeeOuONLt0VuLSin0xmCxWGAynqKZN5iMp2Bvg7oehVy0oLxsBSjBUi5FVWq5bjiQkQxqjtj7TUgqVJD0PBqfiORNhSTp/nh8RT4KPGFJWUUrTCbW1arF3jd7ODjYh9YmRJ8uMLmLeWMb+tNBiLiZxT3rWB9N55bbBKeJEggm9fy+BIa2LtlwpkpBm0W+lCdOKwwX73fOD66H/D01xkRvj4ICxpMnT7C/v7/tYbxTvPaKr6oKn3/+BT65dQtWcENF9tKlUti0xB6mAmI6Id1J6YRjKpFihLtWpZa/Hj/GCvIm4L9z1RsTAkfAbCnZtit07YQ8bPECAG2IfefcuUDyDt4Po1RuApmPQwgiy1zelX8/bsyk5RXB0UxCKqqCI/9c8twVQsWWRGkFkHdkoBSFyie0KPViRW3KHQOhT10o713XT+fnnI9BkS/J+lhZweePU0h5eoE1zaSsYCJmZUIiY0AMCDeWAEuJ33zx20K4BUfw/Plz6vN3gvHa9IKUEj/6+GO8evUqtM9JS83oFpVpS/mDzCXAMiPQo85kPvr0sj1i3v4nJ728cotzuvkGmvceXdfFzRuucgOC3OrwMHb61VrDGBMfz80rmQB47Ozvq9YkXzzJ5KS7TsC8AaeUQqWaQTScyoDJgYz8F2iikEqFnHhO+LTkH08mmM/nmEwmqWW8zzpFZFEu22mmUt2hdGvwuw9dlm0P0/fobY9Oa3RGQxuNru1C+mB4o24bbUwhdF0Xzy0T8nqEy9+N6XHp0qUj5dDbxu7uLh4+fLjtYRSccLyxG3DTNPjz11/jJz++AtPrWFbgLIn8hRdh5zpJqYAQYWWkW68VV6i1dIIQAlUo5/XBBNxZCwhaylPhQzJSz4sKckWDkFRA0TQNutAUcjIZU4cFa9E0VZSDsXetdwJNU0PrLh63GY2wWq3QsH5WBWKULpBnDSnTJMKkqmRIpQRFgayo6y8pE1iVEfxbBbt6VVCSxHfOh47AUsJ5Sw0tvYubUdY69H3IcQtuvBzSA1zk4BG9MqKaLOpsqdtHlADGScxSKsHSGLwLhNznES5FtOzy5lwWa3OqCYnwhafrwwtAOgHnLerxGH/80x8wmUz+pwv3XWA6neL69evw3uPOnTvbHk7BCcVrQw3vyW5wd3cXo+k05Cypt1ldVZkAN0VTXIGWR1X8Ic1JkpF7GNhQYOHD80WlovyMSTrPG0f3sDWbybquo/TLGIPDxSG6toUxBsvVEtbZ2BGDIuMKJIaTaJpRbOc+nU4hGzIdz6Vk1lr4oH4g+VeTRbFV3BSrqxpSKMBLKFkBglIMHrSBxnlkLoagdENwB/OAsx59kL/1QfPati1MIDznj6YM+Iu312wQnHgPOEdpARNuvLHFN8OrgJYi2a7tSJWgOcKliJbzsdYmWRinFeIqhUldJLkdpMS5Dz7AhQvfP5Ji2jQePHhw7P3T6RQ3btzA/fv3NzyigsePH78XXTzeqhvwbDbDl1/+DtVoBB9yfUyiFL36wdL6dSmHHEyc3KHChQ9qb/ugi0gdiDmdwOMChh0sVivyyR2Px/SPBZIej8eDtjsvX77E3t4eEfByia4zsJY6/CpVAZ4Ivq5ZPqZQheU8bYZR8YFHGJOikoacbKWoIQRH9iJE4RJK1nHTkf4HCSmGBRZsKkTnR6DXPdq2xXK5xOFyCWN0POf5uWBQcQJFtjbkabnTBU806zci8y7c2pgq4O9aa+jexAj7uEac61pfNvphaZ3uDaSq8dVXv8eZM2e33q1hb2/vPxLrZDLB7du3cffu3Q2P6uTj4sWL+Oyzz47922KxSCZSJxhvJF2ANqu+++GH+PkvfgnnHIzWVP0V87CIRQlp6Tnc8V6XHfFjBtravoc2JpYae+9RBVJumjqSIUvF+IM+nU4xm82ws7NDFo5NA2ctuq7Dt98uYsqgbVucPXsW8/k8i8xdjKKVqgcbZ4l4ZSJKIQaWlXQXRa1cXUuROaUTeutilEmvmXqWkYqBjyupKadIuW2tNRYL0hV7AKpS1CsNwxLb9XytCxVhFNXaQXUY51zzvCwTbU6y/Hh+X1NEezRXm7brAnwohomVw7Ri+tW9X+P8+fPhHG/fS/fg4AD37t079m+j0Qg7OzsbHtHJR13XmM1m2x7GVvHW28eTyQRXr17FdDrFJ7d+hjOzGazro+ieiyJMcBc7KhFLm19sQM4376mSbVw3EKEyrO/p2Dzz9dnPknuKSVqWd6s2Vp1NRmNSMIDImjfsqqqCsxbLxRJ7/9rHctxiNBqhbir0zqBWFeqaWhMBZIVYx2aZgPMpsleVgjUuFigIyY5hIWUgUscL56lcVwgB4SxUTV11lWogISGRiFdK8txFKNU1WuPli3/iH8//jlcvXkB3XdrIHNaXJSIMqQTvkrlMnubJJ7xk25kmhXzD0zry2YX3oaSNfMmcEKgg0IdcPryHCsPhkTnvgWAQ1HUGnz78FFeuXImrmrfoiboRaK23PYSC9wxvlV4AiDRPnz6Nq1d/ir/89W/43oUf4JuDQ9jexZJgH56jwu5/bsrNOdH0oUOUdklJuVRVqUgedVWhFjKQYPKezY8Zo2WVcr1d12G1WkEqiaZpooQs32yTUmE6PYXRaBKaJJKS4NSpGZpmjLoeQ6kqmo4rpVBX1HGYx8uRqvNDVUY0rMmUD/zasqqDi1qoeqtqSO5EAawdh/9nVm4QgUbSDcoD51MFnrMefe9ilGoztUZMEwTPCo5g2cGM87SDohYkXTJtlvXwgdUtPFUsO8ojOEEbeXwNWA9o7fHRRz/E06dPce3aNczn82OvrYKCR48e4dmzZ9sexkYg1nNxBQUFBQXvDv8fa7yCgoKC9wSFdAsKCgo2iEK6BQUFBRtEId2CgoKCDaKQbkFBQcEGUUi3oKCgYIP4N6SqeECFO87qAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" - }, - "output_type": "display_data" + } } ], "source": [ @@ -450,78 +432,6 @@ "U-Net是一个U型网络结构,可以看做两个大的阶段,图像先经过Encoder编码器进行下采样得到高级语义特征图,再经过Decoder解码器上采样将特征图恢复到原图片的分辨率。" ] }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "LRxPRq2e4P1x" - }, - "source": [ - "### 4.1 自定义模型可视化工具类\n", - "\n", - "\n", - "@TODO,summary接口正在PR中,等Merge后替换为summary接口调用。\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "wcF5Ehd0_BUY" - }, - "outputs": [], - "source": [ - "from tabulate import tabulate\n", - "\n", - "class ModelTools(object):\n", - " def __init__(self):\n", - " self.debug_table_data = []\n", - " self.param_total_count = 0\n", - " \n", - " def _get_param_info(self, layer):\n", - " total_count = 0\n", - " \n", - " for param in layer.parameters():\n", - " item_size = 1\n", - "\n", - " for axis_len in param.shape:\n", - " item_size *= axis_len\n", - "\n", - " total_count += item_size\n", - "\n", - " return total_count\n", - "\n", - " def write_log(self, layer, in_shape, out_shape):\n", - " if type(layer) is not str:\n", - " layer_name = layer.full_name()\n", - " param_count = self._get_param_info(layer)\n", - " else:\n", - " layer_name = layer\n", - " param_count = 0\n", - " \n", - " self.param_total_count += param_count\n", - " self.debug_table_data.append([layer_name, in_shape, out_shape, param_count])\n", - "\n", - " def invoke(self, layer, inputs, inputs_2=None, layer_name=None):\n", - " if inputs_2 is not None:\n", - " in_shape = '{} + {}'.format(inputs.shape, inputs_2.shape)\n", - " output = layer(inputs, inputs_2)\n", - " else:\n", - " in_shape = inputs.shape\n", - " output = layer(inputs)\n", - "\n", - " layer_name = layer_name if layer_name is not None else layer\n", - " self.write_log(layer_name, in_shape, output.shape)\n", - "\n", - " return output\n", - " \n", - " def show(self):\n", - " print(tabulate(self.debug_table_data, headers=['Layer', 'In Shape', 'Out Shape', 'Param Num'], tablefmt='pretty'))\n", - " print('Total Params: {}'.format(self.param_total_count))" - ] - }, { "cell_type": "markdown", "metadata": { @@ -529,14 +439,14 @@ "id": "wi-ouGZL--BN" }, "source": [ - "### 4.2 定义SeparableConv2d接口\n", + "### 4.1 定义SeparableConv2d接口\n", "\n", "我们为了减少卷积操作中的训练参数来提升性能,是继承paddle.nn.Layer自定义了一个SeparableConv2d Layer类,整个过程是把`filter_size * filter_size * num_filters`的Conv2d操作拆解为两个子Conv2d,先对输入数据的每个通道使用`filter_size * filter_size * 1`的卷积核进行计算,输入输出通道数目相同,之后在使用`1 * 1 * num_filters`的卷积核计算。" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": { "colab": {}, "colab_type": "code", @@ -579,10 +489,10 @@ " data_format=data_format)\n", " \n", " def forward(self, inputs):\n", - " x = self.conv_1(inputs)\n", - " x = self.pointwise(x)\n", + " y = self.conv_1(inputs)\n", + " y = self.pointwise(y)\n", "\n", - " return x" + " return y" ] }, { @@ -592,14 +502,14 @@ "id": "zNyzlqQmBEEi" }, "source": [ - "### 4.3 定义Encoder编码器\n", + "### 4.2 定义Encoder编码器\n", "\n", "我们将网络结构中的Encoder下采样过程进行了一个Layer封装,方便后续调用,减少代码编写,下采样是有一个模型逐渐向下画曲线的一个过程,这个过程中是不断的重复一个单元结构将通道数不断增加,形状不断缩小,并且引入残差网络结构,我们将这些都抽象出来进行统一封装。" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": { "colab": {}, "colab_type": "code", @@ -608,9 +518,8 @@ "outputs": [], "source": [ "class Encoder(paddle.nn.Layer):\n", - " def __init__(self, in_channels, out_channels, tools):\n", + " def __init__(self, in_channels, out_channels):\n", " super(Encoder, self).__init__()\n", - " self.tools = tools\n", " \n", " self.relu = paddle.nn.ReLU()\n", " self.separable_conv_01 = SeparableConv2d(in_channels, \n", @@ -631,18 +540,19 @@ "\n", " def forward(self, inputs):\n", " previous_block_activation = inputs\n", + " \n", + " y = self.relu(inputs)\n", + " y = self.separable_conv_01(y)\n", + " y = self.bn(y)\n", + " y = self.relu(y)\n", + " y = self.separable_conv_02(y)\n", + " y = self.bn(y)\n", + " y = self.pool(y)\n", + " \n", + " residual = self.residual_conv(previous_block_activation)\n", + " y = paddle.add(y, residual)\n", "\n", - " x = self.tools.invoke(self.relu, inputs)\n", - " x = self.tools.invoke(self.separable_conv_01, x)\n", - " x = self.tools.invoke(self.bn, x)\n", - " x = self.tools.invoke(self.relu, x)\n", - " x = self.tools.invoke(self.separable_conv_02, x)\n", - " x = self.tools.invoke(self.bn, x)\n", - " x = self.tools.invoke(self.pool, x)\n", - " residual = self.tools.invoke(self.residual_conv, previous_block_activation)\n", - " x = self.tools.invoke(paddle.add, x, inputs_2=residual, layer_name='ADD')\n", - "\n", - " return x" + " return y" ] }, { @@ -652,14 +562,14 @@ "id": "nPBRD42WGmuH" }, "source": [ - "### 4.4 定义Decoder解码器\n", + "### 4.3 定义Decoder解码器\n", "\n", "在通道数达到最大得到高级语义特征图后,网络结构会开始进行decode操作,进行上采样,通道数逐渐减小,对应图片尺寸逐步增加,直至恢复到原图像大小,那么这个过程里面也是通过不断的重复相同结构的残差网络完成,我们也是为了减少代码编写,将这个过程定义一个Layer来放到模型组网中使用。" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": { "colab": {}, "colab_type": "code", @@ -668,9 +578,8 @@ "outputs": [], "source": [ "class Decoder(paddle.nn.Layer):\n", - " def __init__(self, in_channels, out_channels, tools):\n", + " def __init__(self, in_channels, out_channels):\n", " super(Decoder, self).__init__()\n", - " self.tools = tools\n", "\n", " self.relu = paddle.nn.ReLU()\n", " self.conv_transpose_01 = paddle.nn.ConvTranspose2d(in_channels, \n", @@ -691,18 +600,20 @@ " def forward(self, inputs):\n", " previous_block_activation = inputs\n", "\n", - " x = self.tools.invoke(self.relu, inputs)\n", - " x = self.tools.invoke(self.conv_transpose_01, x)\n", - " x = self.tools.invoke(self.bn, x)\n", - " x = self.tools.invoke(self.relu, x)\n", - " x = self.tools.invoke(self.conv_transpose_02, x)\n", - " x = self.tools.invoke(self.bn, x)\n", - " x = self.tools.invoke(self.upsample, x)\n", - " residual = self.tools.invoke(self.upsample, previous_block_activation)\n", - " residual = self.tools.invoke(self.residual_conv, residual)\n", - " x = self.tools.invoke(paddle.add, x, inputs_2=residual, layer_name='ADD')\n", + " y = self.relu(inputs)\n", + " y = self.conv_transpose_01(y)\n", + " y = self.bn(y)\n", + " y = self.relu(y)\n", + " y = self.conv_transpose_02(y)\n", + " y = self.bn(y)\n", + " y = self.upsample(y)\n", + " \n", + " residual = self.upsample(previous_block_activation)\n", + " residual = self.residual_conv(residual)\n", + " \n", + " y = paddle.add(y, residual)\n", " \n", - " return x" + " return y" ] }, { @@ -712,14 +623,14 @@ "id": "vLKLj2FMGvdc" }, "source": [ - "### 4.5 训练模型组网\n", + "### 4.4 训练模型组网\n", "\n", "按照U型网络结构格式进行整体的网络结构搭建,三次下采样,四次上采样。" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": { "colab": {}, "colab_type": "code", @@ -728,9 +639,8 @@ "outputs": [], "source": [ "class PetModel(paddle.nn.Layer):\n", - " def __init__(self, num_classes, tools):\n", + " def __init__(self, num_classes):\n", " super(PetModel, self).__init__()\n", - " self.tools = tools\n", "\n", " self.conv_1 = paddle.nn.Conv2d(3, 32, \n", " kernel_size=3,\n", @@ -747,7 +657,7 @@ " # 根据下采样个数和配置循环定义子Layer,避免重复写一样的程序\n", " for out_channels in self.encoder_list:\n", " block = self.add_sublayer('encoder_%s'.format(out_channels),\n", - " Encoder(in_channels, out_channels, self.tools))\n", + " Encoder(in_channels, out_channels))\n", " self.encoders.append(block)\n", " in_channels = out_channels\n", "\n", @@ -756,7 +666,7 @@ " # 根据上采样个数和配置循环定义子Layer,避免重复写一样的程序\n", " for out_channels in self.decoder_list:\n", " block = self.add_sublayer('decoder_%s'.format(out_channels), \n", - " Decoder(in_channels, out_channels, self.tools))\n", + " Decoder(in_channels, out_channels))\n", " self.decoders.append(block)\n", " in_channels = out_channels\n", "\n", @@ -766,9 +676,9 @@ " padding='same')\n", " \n", " def forward(self, inputs):\n", - " y = self.tools.invoke(self.conv_1, inputs)\n", - " y = self.tools.invoke(self.bn, y)\n", - " y = self.tools.invoke(self.relu, y)\n", + " y = self.conv_1(inputs)\n", + " y = self.bn(y)\n", + " y = self.relu(y)\n", " \n", " for encoder in self.encoders:\n", " y = encoder(y)\n", @@ -776,7 +686,7 @@ " for decoder in self.decoders:\n", " y = decoder(y)\n", " \n", - " y = self.tools.invoke(self.output_conv, y)\n", + " y = self.output_conv(y)\n", " \n", " return y" ] @@ -788,7 +698,7 @@ "id": "6Nf7hQ60G4sj" }, "source": [ - "### 4.6 模型可视化\n", + "### 4.5 模型可视化\n", "\n", "调用飞桨提供的summary接口对组建好的模型进行可视化,方便进行模型结构和参数信息的查看和确认。\n", "@TODO,需要替换" @@ -809,99 +719,26 @@ }, "outputs": [ { - "name": "stdout", "output_type": "stream", - "text": [ - "+--------------------+---------------------------------------+-------------------+-----------+\n", - "| Layer | In Shape | Out Shape | Param Num |\n", - "+--------------------+---------------------------------------+-------------------+-----------+\n", - "| conv2d_0 | [1, 3, 160, 160] | [1, 32, 80, 80] | 896 |\n", - "| batch_norm2d_0 | [1, 32, 80, 80] | [1, 32, 80, 80] | 128 |\n", - "| re_lu_0 | [1, 32, 80, 80] | [1, 32, 80, 80] | 0 |\n", - "| re_lu_1 | [1, 32, 80, 80] | [1, 32, 80, 80] | 0 |\n", - "| separable_conv2d_0 | [1, 32, 80, 80] | [1, 64, 80, 80] | 2400 |\n", - "| batch_norm2d_1 | [1, 64, 80, 80] | [1, 64, 80, 80] | 256 |\n", - "| re_lu_1 | [1, 64, 80, 80] | [1, 64, 80, 80] | 0 |\n", - "| separable_conv2d_1 | [1, 64, 80, 80] | [1, 64, 80, 80] | 4736 |\n", - "| batch_norm2d_1 | [1, 64, 80, 80] | [1, 64, 80, 80] | 256 |\n", - "| max_pool2d_0 | [1, 64, 80, 80] | [1, 64, 40, 40] | 0 |\n", - "| conv2d_5 | [1, 32, 80, 80] | [1, 64, 40, 40] | 2112 |\n", - "| ADD | [1, 64, 40, 40] + [1, 64, 40, 40] | [1, 64, 40, 40] | 0 |\n", - "| re_lu_2 | [1, 64, 40, 40] | [1, 64, 40, 40] | 0 |\n", - "| separable_conv2d_2 | [1, 64, 40, 40] | [1, 128, 40, 40] | 8896 |\n", - "| batch_norm2d_2 | [1, 128, 40, 40] | [1, 128, 40, 40] | 512 |\n", - "| re_lu_2 | [1, 128, 40, 40] | [1, 128, 40, 40] | 0 |\n", - "| separable_conv2d_3 | [1, 128, 40, 40] | [1, 128, 40, 40] | 17664 |\n", - "| batch_norm2d_2 | [1, 128, 40, 40] | [1, 128, 40, 40] | 512 |\n", - "| max_pool2d_1 | [1, 128, 40, 40] | [1, 128, 20, 20] | 0 |\n", - "| conv2d_10 | [1, 64, 40, 40] | [1, 128, 20, 20] | 8320 |\n", - "| ADD | [1, 128, 20, 20] + [1, 128, 20, 20] | [1, 128, 20, 20] | 0 |\n", - "| re_lu_3 | [1, 128, 20, 20] | [1, 128, 20, 20] | 0 |\n", - "| separable_conv2d_4 | [1, 128, 20, 20] | [1, 256, 20, 20] | 34176 |\n", - "| batch_norm2d_3 | [1, 256, 20, 20] | [1, 256, 20, 20] | 1024 |\n", - "| re_lu_3 | [1, 256, 20, 20] | [1, 256, 20, 20] | 0 |\n", - "| separable_conv2d_5 | [1, 256, 20, 20] | [1, 256, 20, 20] | 68096 |\n", - "| batch_norm2d_3 | [1, 256, 20, 20] | [1, 256, 20, 20] | 1024 |\n", - "| max_pool2d_2 | [1, 256, 20, 20] | [1, 256, 10, 10] | 0 |\n", - "| conv2d_15 | [1, 128, 20, 20] | [1, 256, 10, 10] | 33024 |\n", - "| ADD | [1, 256, 10, 10] + [1, 256, 10, 10] | [1, 256, 10, 10] | 0 |\n", - "| re_lu_4 | [1, 256, 10, 10] | [1, 256, 10, 10] | 0 |\n", - "| conv_transpose2d_0 | [1, 256, 10, 10] | [1, 256, 10, 10] | 590080 |\n", - "| batch_norm2d_4 | [1, 256, 10, 10] | [1, 256, 10, 10] | 1024 |\n", - "| re_lu_4 | [1, 256, 10, 10] | [1, 256, 10, 10] | 0 |\n", - "| conv_transpose2d_1 | [1, 256, 10, 10] | [1, 256, 10, 10] | 590080 |\n", - "| batch_norm2d_4 | [1, 256, 10, 10] | [1, 256, 10, 10] | 1024 |\n", - "| up_sample_0 | [1, 256, 10, 10] | [1, 256, 20, 20] | 0 |\n", - "| up_sample_0 | [1, 256, 10, 10] | [1, 256, 20, 20] | 0 |\n", - "| conv2d_16 | [1, 256, 20, 20] | [1, 256, 20, 20] | 65792 |\n", - "| ADD | [1, 256, 20, 20] + [1, 256, 20, 20] | [1, 256, 20, 20] | 0 |\n", - "| re_lu_5 | [1, 256, 20, 20] | [1, 256, 20, 20] | 0 |\n", - "| conv_transpose2d_2 | [1, 256, 20, 20] | [1, 128, 20, 20] | 295040 |\n", - "| batch_norm2d_5 | [1, 128, 20, 20] | [1, 128, 20, 20] | 512 |\n", - "| re_lu_5 | [1, 128, 20, 20] | [1, 128, 20, 20] | 0 |\n", - "| conv_transpose2d_3 | [1, 128, 20, 20] | [1, 128, 20, 20] | 147584 |\n", - "| batch_norm2d_5 | [1, 128, 20, 20] | [1, 128, 20, 20] | 512 |\n", - "| up_sample_1 | [1, 128, 20, 20] | [1, 128, 40, 40] | 0 |\n", - "| up_sample_1 | [1, 256, 20, 20] | [1, 256, 40, 40] | 0 |\n", - "| conv2d_17 | [1, 256, 40, 40] | [1, 128, 40, 40] | 32896 |\n", - "| ADD | [1, 128, 40, 40] + [1, 128, 40, 40] | [1, 128, 40, 40] | 0 |\n", - "| re_lu_6 | [1, 128, 40, 40] | [1, 128, 40, 40] | 0 |\n", - "| conv_transpose2d_4 | [1, 128, 40, 40] | [1, 64, 40, 40] | 73792 |\n", - "| batch_norm2d_6 | [1, 64, 40, 40] | [1, 64, 40, 40] | 256 |\n", - "| re_lu_6 | [1, 64, 40, 40] | [1, 64, 40, 40] | 0 |\n", - "| conv_transpose2d_5 | [1, 64, 40, 40] | [1, 64, 40, 40] | 36928 |\n", - "| batch_norm2d_6 | [1, 64, 40, 40] | [1, 64, 40, 40] | 256 |\n", - "| up_sample_2 | [1, 64, 40, 40] | [1, 64, 80, 80] | 0 |\n", - "| up_sample_2 | [1, 128, 40, 40] | [1, 128, 80, 80] | 0 |\n", - "| conv2d_18 | [1, 128, 80, 80] | [1, 64, 80, 80] | 8256 |\n", - "| ADD | [1, 64, 80, 80] + [1, 64, 80, 80] | [1, 64, 80, 80] | 0 |\n", - "| re_lu_7 | [1, 64, 80, 80] | [1, 64, 80, 80] | 0 |\n", - "| conv_transpose2d_6 | [1, 64, 80, 80] | [1, 32, 80, 80] | 18464 |\n", - "| batch_norm2d_7 | [1, 32, 80, 80] | [1, 32, 80, 80] | 128 |\n", - "| re_lu_7 | [1, 32, 80, 80] | [1, 32, 80, 80] | 0 |\n", - "| conv_transpose2d_7 | [1, 32, 80, 80] | [1, 32, 80, 80] | 9248 |\n", - "| batch_norm2d_7 | [1, 32, 80, 80] | [1, 32, 80, 80] | 128 |\n", - "| up_sample_3 | [1, 32, 80, 80] | [1, 32, 160, 160] | 0 |\n", - "| up_sample_3 | [1, 64, 80, 80] | [1, 64, 160, 160] | 0 |\n", - "| conv2d_19 | [1, 64, 160, 160] | [1, 32, 160, 160] | 2080 |\n", - "| ADD | [1, 32, 160, 160] + [1, 32, 160, 160] | [1, 32, 160, 160] | 0 |\n", - "| conv2d_20 | [1, 32, 160, 160] | [1, 4, 160, 160] | 1156 |\n", - "+--------------------+---------------------------------------+-------------------+-----------+\n", - "Total Params: 2059268\n" - ] + "name": "stdout", + "text": "--------------------------------------------------------------------------------\n Layer (type) Input Shape Output Shape Param #\n================================================================================\n Conv2d-22 [-1, 3, 160, 160] [-1, 32, 80, 80] 896\n BatchNorm2d-9 [-1, 32, 80, 80] [-1, 32, 80, 80] 64\n ReLU-9 [-1, 32, 80, 80] [-1, 32, 80, 80] 0\n ReLU-12 [-1, 256, 20, 20] [-1, 256, 20, 20] 0\n Conv2d-33 [-1, 128, 20, 20] [-1, 128, 20, 20] 1,152\n Conv2d-34 [-1, 128, 20, 20] [-1, 256, 20, 20] 33,024\nSeparableConv2d-11 [-1, 128, 20, 20] [-1, 256, 20, 20] 0\n BatchNorm2d-12 [-1, 256, 20, 20] [-1, 256, 20, 20] 512\n Conv2d-35 [-1, 256, 20, 20] [-1, 256, 20, 20] 2,304\n Conv2d-36 [-1, 256, 20, 20] [-1, 256, 20, 20] 65,792\nSeparableConv2d-12 [-1, 256, 20, 20] [-1, 256, 20, 20] 0\n MaxPool2d-6 [-1, 256, 20, 20] [-1, 256, 10, 10] 0\n Conv2d-37 [-1, 128, 20, 20] [-1, 256, 10, 10] 33,024\n Encoder-6 [-1, 128, 20, 20] [-1, 256, 10, 10] 0\n ReLU-16 [-1, 32, 80, 80] [-1, 32, 80, 80] 0\nConvTranspose2d-15 [-1, 64, 80, 80] [-1, 32, 80, 80] 18,464\n BatchNorm2d-16 [-1, 32, 80, 80] [-1, 32, 80, 80] 64\nConvTranspose2d-16 [-1, 32, 80, 80] [-1, 32, 80, 80] 9,248\n UpSample-8 [-1, 64, 80, 80] [-1, 64, 160, 160] 0\n Conv2d-41 [-1, 64, 160, 160] [-1, 32, 160, 160] 2,080\n Decoder-8 [-1, 64, 80, 80] [-1, 32, 160, 160] 0\n Conv2d-42 [-1, 32, 160, 160] [-1, 4, 160, 160] 1,156\n================================================================================\nTotal params: 167,780\nTrainable params: 167,780\nNon-trainable params: 0\n--------------------------------------------------------------------------------\nInput size (MB): 0.29\nForward/backward pass size (MB): 43.16\nParams size (MB): 0.64\nEstimated Total Size (MB): 44.10\n--------------------------------------------------------------------------------\n\n" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": "{'total_params': 167780, 'trainable_params': 167780}" + }, + "metadata": {}, + "execution_count": 11 } ], "source": [ - "paddle.disable_static()\n", + "from paddle.static import InputSpec\n", "\n", + "paddle.disable_static()\n", "num_classes = 4\n", - "model_tools = ModelTools()\n", - "model = PetModel(num_classes, model_tools)\n", - "\n", - "data = paddle.to_tensor(np.expand_dims(train_dataset[0][0].astype('float32'), 0))\n", - "res = model(data)\n", - "\n", - "model_tools.show()" + "model = paddle.Model(PetModel(num_classes))\n", + "model.summary((3, 160, 160))" ] }, { @@ -928,7 +765,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "colab": {}, "colab_type": "code", @@ -1122,9 +959,9 @@ "toc_visible": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.7.4 64-bit", "language": "python", - "name": "python3" + "name": "python_defaultSpec_1599452401282" }, "language_info": { "codemirror_mode": { @@ -1136,9 +973,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.7.4-final" } }, "nbformat": 4, "nbformat_minor": 1 -} +} \ No newline at end of file -- GitLab