Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
4dbd827b
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4dbd827b
编写于
8月 27, 2020
作者:
lsqtina
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop
上级
9fb40dac
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
466 addition
and
0 deletion
+466
-0
paddle2.0_docs/data_loader/data_loader_v3.ipynb
paddle2.0_docs/data_loader/data_loader_v3.ipynb
+466
-0
未找到文件。
paddle2.0_docs/data_loader/data_loader_v3.ipynb
0 → 100644
浏览文件 @
4dbd827b
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 环境\n",
"本教程基于paddle2.0-alpha编写,如果您的环境不是本版本,请先安装paddle2.0-alpha。"
]
},
{
"cell_type": "code",
"execution_count": 295,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'2.0.0-alpha0'"
]
},
"execution_count": 295,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import paddle\n",
"paddle.__version__"
]
},
{
"cell_type": "code",
"execution_count": 296,
"metadata": {},
"outputs": [],
"source": [
"#数据准备\n",
"#数据处理部分之前的代码,加入部分数据处理的库\n",
"import paddle\n",
"from paddle.imperative import to_variable\n",
"import numpy as np\n",
"import os\n",
"import gzip #解压缩包,python自带的包\n",
"import json\n",
"import random\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1.数据读取与数据集划分\n",
"加载json数据文件。"
]
},
{
"cell_type": "code",
"execution_count": 297,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"loading mnist dataset from /Users/liushuangqiao/Downloads/mnist.json.gz ......\n",
"mnist dataset load done\n",
"训练数据集数量: 50000 50000\n",
"验证数据集数量: 10000 10000\n",
"测试数据集数量: 10000 10000\n"
]
}
],
"source": [
"# 声明数据集文件位置\n",
"datafile = '/Users/liushuangqiao/Downloads/mnist.json.gz'\n",
"print('loading mnist dataset from {} ......'.format(datafile))\n",
"# 加载json数据文件\n",
"data = json.load(gzip.open(datafile))\n",
"print('mnist dataset load done')\n",
"# 读取到的数据区分训练集,验证集,测试集\n",
"train_set, val_set, eval_set = data\n",
"\n",
"# 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS\n",
"IMG_ROWS = 28\n",
"IMG_COLS = 28\n",
"\n",
"# 打印数据信息\n",
"imgs, labels = train_set[0], train_set[1]\n",
"print(\"训练数据集数量: \", len(imgs),len(labels))\n",
"\n",
"# 观察验证集数量\n",
"imgs, labels = val_set[0], val_set[1]\n",
"print(\"验证数据集数量: \", len(imgs),len(labels))\n",
"\n",
"# 观察测试集数量\n",
"imgs, labels = val= eval_set[0], eval_set[1]\n",
"print(\"测试数据集数量: \", len(imgs),len(labels))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2. 通过DataSet与DataLoader获取数据"
]
},
{
"cell_type": "code",
"execution_count": 298,
"metadata": {},
"outputs": [],
"source": [
"from paddle.io import Dataset\n",
"\n",
"#定义Dataset类对象\n",
"class RandomDataset(Dataset):\n",
" def __init__(self, imgs, labels):\n",
" self.imgs = imgs\n",
" self.labels = labels\n",
" \n",
" def __getitem__(self, idx):\n",
" img = self.imgs[idx]\n",
" label = self.labels[idx]\n",
" return img, label\n",
" \n",
" def __len__(self):\n",
" return len(self.imgs)\n"
]
},
{
"cell_type": "code",
"execution_count": 299,
"metadata": {},
"outputs": [],
"source": [
"#通过DataLoader读取dataset数据,涉及必要参数 :dataset、places=None、batch_size\n",
"def load_data_new(mode='train'):\n",
" datafile = '/Users/liushuangqiao/Downloads/mnist.json.gz'\n",
" print('loading mnist dataset from {} ......'.format(datafile))\n",
" # 定义批大小\n",
" BATCH_SIZE = 64\n",
" # 加载json数据文件\n",
" data = json.load(gzip.open(datafile))\n",
" print('mnist dataset load done')\n",
" # 读取到的数据区分训练集,验证集,测试集\n",
" train_set, val_set, eval_set = data\n",
" if mode=='train':\n",
" # 获得训练数据集\n",
" imgs, labels = train_set[0], train_set[1]\n",
" elif mode=='valid':\n",
" # 获得验证数据集\n",
" imgs, labels = val_set[0], val_set[1]\n",
" elif mode=='eval':\n",
" # 获得测试数据集\n",
" imgs, labels = eval_set[0], eval_set[1]\n",
" else:\n",
" raise Exception(\"mode can only be one of ['train', 'valid', 'eval']\")\n",
" dataset = RandomDataset(imgs, labels)\n",
" loader = paddle.io.DataLoader(dataset, places=paddle.CPUPlace(),batch_size=BATCH_SIZE, drop_last=True)\n",
" return loader"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 3. 数据校验"
]
},
{
"cell_type": "code",
"execution_count": 300,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"loading mnist dataset from /Users/liushuangqiao/Downloads/mnist.json.gz ......\n",
"mnist dataset load done\n",
"[64, 784] [64] <class 'paddle.fluid.core_avx.VarBase'> <class 'paddle.fluid.core_avx.VarBase'>\n",
"\n",
"打印第一个batch的第一个图像,对应标签数字为[5]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAEICAYAAACZA4KlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAQbUlEQVR4nO3dfbBU9X3H8fdHHhV8AB8oIlWC+BgjJndQIzV2Eqk6ddTplErbFBktmpHWTGir0mlk0jqjHaMhjtpiJWKqJFhjJDPmwTBOTKaReDEoqFURMIrXi4gKPgQvl2//2AOz6t3fvezu3V3u7/OauXPPnu85e7539cPZ3d/Z/SkiMLOBb59mN2BmjeGwm2XCYTfLhMNulgmH3SwTDrtZJhz2AUrSM5LOanYf1jrkcXazPPjMbpYJh32AkrRB0pckzZd0v6T/lrRN0mpJx0i6VtImSa9Imla23yxJzxXbrpN0+cfu958kdUh6TdJlkkLS0UVtmKSbJP1OUqek/5C0b6P/duuZw56H84HvAqOA3wI/pfTffhzwDeA/y7bdBPwpcAAwC7hF0mcBJJ0DfA34EnA0cNbHjnMDcAwwuaiPA77eH3+Q7Tm/Zh+gJG0ALgOmAmdExNnF+vOBJcCBEdEtaX9gKzAqIt7u4X5+CDwaEQskLQI6I+LaonY08CIwCXgJeBf4TES8VNRPB+6LiAn9+9daXwxudgPWEJ1lyx8AmyOiu+w2wEjgbUnnAtdROkPvA+wHrC62ORxoL7uvV8qWDy22XSlp1zoBg+r0N1iNHHbbTdIw4AHgb4CHIqKrOLPvSm8HcETZLuPLljdT+ofjxIjY2Ih+bc/4NbuVGwoMA94AdhRn+Wll9aXALEnHS9oP+JddhYjYCdxJ6TX+YQCSxkn6k4Z1b0kOu+0WEduAv6cU6reAvwSWldV/DHwbeBRYCzxelLYXv6/etV7SVuDnwLENad565TforGqSjgfWAMMiYkez+7E0n9ltj0i6qBhPHwXcCPzIQd87OOy2py6nNBb/EtANfKW57Vhf+Wm8WSZ8ZjfLREPH2YdqWAxnRCMPaZaV3/MeH8Z29VSrKezFtdILKF0l9V8RcUNq++GM4FR9sZZDmlnCilhesVb103hJg4DbgHOBE4AZkk6o9v7MrH/V8pp9CrA2ItZFxIfA94AL6tOWmdVbLWEfx0c/CPFqse4jJM2W1C6pvWv3hVZm1mj9/m58RCyMiLaIaBvCsP4+nJlVUEvYN/LRTz0dUawzsxZUS9ifACZJmiBpKHAxZR+aMLPWUvXQW0TskDSH0lccDQIWRcQzdevMzOqqpnH2iHgYeLhOvZhZP/LlsmaZcNjNMuGwm2XCYTfLhMNulgmH3SwTDrtZJhx2s0w47GaZcNjNMuGwm2XCYTfLhMNulgmH3SwTDrtZJhx2s0w47GaZcNjNMuGwm2XCYTfLhMNulgmH3SwTDrtZJhx2s0w47GaZcNjNMuGwm2XCYTfLhMNulomaZnG1vcA+g5LlwYcd0q+Hf/4fJlSsdY/Ymdz3yImbkvURV6SP3fGtYRVrT7Z9P7nv5u73kvXTls5N1ifOfTxZb4aawi5pA7AN6AZ2RERbPZoys/qrx5n9jyNicx3ux8z6kV+zm2Wi1rAH8DNJKyXN7mkDSbMltUtq72J7jYczs2rV+jR+akRslHQY8Iik/4uIx8o3iIiFwEKAAzQ6ajyemVWppjN7RGwsfm8CHgSm1KMpM6u/qsMuaYSk/XctA9OANfVqzMzqq5an8WOAByXtup/7IuIndelqgBl07NHJegwfkqx3fGFUsv7+6ZXHhEcfmB4v/uXJ6fHmZvrx+/sn6zfefk6yvuKk+yrW1nd9kNz3hs6zk/XDf5m+RqAVVR32iFgHnFzHXsysH3nozSwTDrtZJhx2s0w47GaZcNjNMuGPuNbBzi+ckqzfvPj2ZP2YIUPr2c5eoyu6k/Wvf/uSZH3Ie+kLMj+/dE7F2siNXcl9h21OD83tu/I3yXor8pndLBMOu1kmHHazTDjsZplw2M0y4bCbZcJhN8uEx9nrYOjzryXrK38/Plk/ZkhnPdupq7kdpyXr695NfxX13RP/p2LtnZ3pcfIxt/5vst6fBuJXKvnMbpYJh90sEw67WSYcdrNMOOxmmXDYzTLhsJtlQhGNG1E8QKPjVH2xYcdrFW9dcnqy/s656a97HvzUyGR91ZW37nFPu/zb5s8k60/80cHJevfWrekDnFb5/tdfpeSuE2Y8lb5v+4QVsZytsaXHB9ZndrNMOOxmmXDYzTLhsJtlwmE3y4TDbpYJh90sEx5nbwGDDh6drHe/uSVZX7+k8mS6z5y5KLnvlOv/Llk/7Pbmfabc9lxN4+ySFknaJGlN2brRkh6R9GLxOz2BuJk1XV+ext8NfHzW+2uA5RExCVhe3DazFtZr2CPiMeDjzyMvABYXy4uBC+vcl5nVWbXfQTcmIjqK5deBMZU2lDQbmA0wnP2qPJyZ1armd+Oj9A5fxXf5ImJhRLRFRNsQhtV6ODOrUrVh75Q0FqD4val+LZlZf6g27MuAmcXyTOCh+rRjZv2l19fskpYAZwGHSHoVuA64AVgq6VLgZWB6fzY50PU2jt6brq3Vz+9+4l8/m6y/cUf6M+c08DoNq02vYY+IGRVKvjrGbC/iy2XNMuGwm2XCYTfLhMNulgmH3SwTnrJ5ADj+H5+vWJt1UnrQ5DtHLk/Wz/rzK5P1kUsfT9atdfjMbpYJh90sEw67WSYcdrNMOOxmmXDYzTLhsJtlwuPsA0Bq2uQ3rzguue/vfvRBsn719fck69f+xUXJejx5YMXa+Ov9NdWN5DO7WSYcdrNMOOxmmXDYzTLhsJtlwmE3y4TDbpYJT9mcuS2zTk/W751/U7I+YfDwqo994uI5yfqkO19L1nesf7nqYw9UNU3ZbGYDg8NulgmH3SwTDrtZJhx2s0w47GaZcNjNMuFxdkuKz5+crB9w48Zkfcmnflr1sY979LJk/dj5byfr3WvXV33svVVN4+ySFknaJGlN2br5kjZKWlX8nFfPhs2s/vryNP5u4Jwe1t8SEZOLn4fr25aZ1VuvYY+Ix4AtDejFzPpRLW/QzZH0dPE0f1SljSTNltQuqb2L7TUczsxqUW3Y7wAmApOBDuCblTaMiIUR0RYRbUMYVuXhzKxWVYU9IjojojsidgJ3AlPq25aZ1VtVYZc0tuzmRcCaStuaWWvodZxd0hLgLOAQoBO4rrg9GQhgA3B5RHT0djCPsw88gw49NFl/7eJJFWsrrlmQ3HefXs5Ff7V+WrL+ztQ3k/WBKDXO3uskERExo4fVd9XclZk1lC+XNcuEw26WCYfdLBMOu1kmHHazTPgjrtY0S1/9dbK+n4Ym6+/Hh8n6+XOuqljb94e/Se67t/JXSZuZw26WC4fdLBMOu1kmHHazTDjsZplw2M0y0eun3ixvccbkZH3t9PSUzZ+evKFirbdx9N7cuuWUZH3fh56o6f4HGp/ZzTLhsJtlwmE3y4TDbpYJh90sEw67WSYcdrNMeJx9gNPnTkzWX7gqPUvPnWcsTtbPHJ7+THkttkdXsv74lgnpO+j9282z4jO7WSYcdrNMOOxmmXDYzTLhsJtlwmE3y4TDbpaJXsfZJY0H7gHGUJqieWFELJA0Gvg+cBSlaZunR8Rb/ddqvgYf9YfJ+kuzjqhYm3/xkuS+fzZyc1U91cO8zrZk/bFvnZasH3RP+nvn7aP6cmbfAcyNiBOA04ArJZ0AXAMsj4hJwPLitpm1qF7DHhEdEfFksbwNeA4YB1wA7Lq8ajFwYX81aWa126PX7JKOAk4BVgBjInZfj/g6paf5Ztai+hx2SSOBB4CvRsTW8lqUJozrcdI4SbMltUtq72J7Tc2aWfX6FHZJQygF/d6I+EGxulPS2KI+FtjU074RsTAi2iKibQjpD12YWf/pNeySBNwFPBcRN5eVlgEzi+WZwEP1b8/M6qUvH3E9A/gysFrSqmLdPOAGYKmkS4GXgen90+Leb/CR45P1rZ87PFmf/q8/SdavOOjBPe6pXuZ2pIfHfn1b5eG10Xc/ntz3oPDQWj31GvaI+BXQ43zPgCdbN9tL+Ao6s0w47GaZcNjNMuGwm2XCYTfLhMNulgl/lXQfDf6Dypf+b/nOyOS+X5nwi2R9xv6dVfVUD3M2Tk3Wf3t7esrmg+9/Olkf/Z7HyluFz+xmmXDYzTLhsJtlwmE3y4TDbpYJh90sEw67WSayGWfvmpb+2uLtX9uSrM87+uGKtWn7vldVT/XS2f1BxdqZy+Ym9z1u3nPJ+qit6XHyncmqtRKf2c0y4bCbZcJhN8uEw26WCYfdLBMOu1kmHHazTGQzzr7+ovS/ay+cdH+/Hfu2tycm6wt+MS1ZV3elb/IuOe4b6yrWJr2xIrlvd7JqA4nP7GaZcNjNMuGwm2XCYTfLhMNulgmH3SwTDrtZJhQR6Q2k8cA9wBgggIURsUDSfOBvgTeKTedFROUPfQMHaHScKs/ybNZfVsRytsaWHi/M6MtFNTuAuRHxpKT9gZWSHilqt0TETfVq1Mz6T69hj4gOoKNY3ibpOWBcfzdmZvW1R6/ZJR0FnALsugZzjqSnJS2SNKrCPrMltUtq72J7Tc2aWfX6HHZJI4EHgK9GxFbgDmAiMJnSmf+bPe0XEQsjoi0i2oYwrA4tm1k1+hR2SUMoBf3eiPgBQER0RkR3ROwE7gSm9F+bZlarXsMuScBdwHMRcXPZ+rFlm10ErKl/e2ZWL315N/4M4MvAakmrinXzgBmSJlMajtsAXN4vHZpZXfTl3fhfAT2N2yXH1M2stfgKOrNMOOxmmXDYzTLhsJtlwmE3y4TDbpYJh90sEw67WSYcdrNMOOxmmXDYzTLhsJtlwmE3y4TDbpaJXr9Kuq4Hk94AXi5bdQiwuWEN7JlW7a1V+wL3Vq169nZkRBzaU6GhYf/EwaX2iGhrWgMJrdpbq/YF7q1ajerNT+PNMuGwm2Wi2WFf2OTjp7Rqb63aF7i3ajWkt6a+Zjezxmn2md3MGsRhN8tEU8Iu6RxJz0taK+maZvRQiaQNklZLWiWpvcm9LJK0SdKasnWjJT0i6cXid49z7DWpt/mSNhaP3SpJ5zWpt/GSHpX0rKRnJF1VrG/qY5foqyGPW8Nfs0saBLwAnA28CjwBzIiIZxvaSAWSNgBtEdH0CzAknQm8C9wTEZ8u1v07sCUibij+oRwVEVe3SG/zgXebPY13MVvR2PJpxoELgUto4mOX6Gs6DXjcmnFmnwKsjYh1EfEh8D3ggib00fIi4jFgy8dWXwAsLpYXU/qfpeEq9NYSIqIjIp4slrcBu6YZb+pjl+irIZoR9nHAK2W3X6W15nsP4GeSVkqa3exmejAmIjqK5deBMc1spge9TuPdSB+bZrxlHrtqpj+vld+g+6SpEfFZ4FzgyuLpakuK0muwVho77dM03o3SwzTjuzXzsat2+vNaNSPsG4HxZbePKNa1hIjYWPzeBDxI601F3blrBt3i96Ym97NbK03j3dM047TAY9fM6c+bEfYngEmSJkgaClwMLGtCH58gaUTxxgmSRgDTaL2pqJcBM4vlmcBDTezlI1plGu9K04zT5Meu6dOfR0TDf4DzKL0j/xLwz83ooUJfnwKeKn6eaXZvwBJKT+u6KL23cSlwMLAceBH4OTC6hXr7LrAaeJpSsMY2qbeplJ6iPw2sKn7Oa/Zjl+irIY+bL5c1y4TfoDPLhMNulgmH3SwTDrtZJhx2s0w47GaZcNjNMvH/TswJIRNpLrYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"#声明数据读取函数,从训练集中读取数据\n",
"paddle.enable_imperative()\n",
"train_loader = load_data_new('train')\n",
"for batch_id, data in enumerate(train_loader()):\n",
"\n",
" image_data, label_data = data[0], data[1] \n",
" if batch_id == 0:\n",
" # 打印数据shape和类型\n",
" print(image_data.shape, label_data.shape, type(image_data), type(label_data))\n",
" print(\"\\n打印第一个batch的第一个图像,对应标签数字为{}\".format(label_data[0].numpy()))\n",
" # 原始数据是归一化后的数据,因此这里需要反归一化\n",
" img = np.array(image_data[0]+1)*127.5\n",
" img = np.reshape(img, [28, 28]).astype(np.uint8)\n",
" plt.figure(\"Image\") # 图像窗口名称\n",
" plt.imshow(img)\n",
" plt.axis('on') # 关掉坐标轴为 off\n",
" plt.title('image') # 图像题目\n",
" plt.show()\n",
" break"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 4. 组成网络"
]
},
{
"cell_type": "code",
"execution_count": 301,
"metadata": {},
"outputs": [],
"source": [
"from paddle.nn import Conv2D, Pool2D, Linear\n",
"#定义网络结构,这里使用最简单的线性网络\n",
"class Mnist(paddle.nn.Layer):\n",
" def __init__(self, name_scope):\n",
" super(Mnist, self).__init__()\n",
" self.fc = Linear(input_dim=784, output_dim=10, act='softmax', dtype='float64')\n",
"\n",
" # 定义网络结构的前向计算过程\n",
" def forward(self, inputs,label=None):\n",
" outputs = self.fc(inputs)\n",
" if label is not None:\n",
" acc = paddle.metric.accuracy(input=outputs, label=label)\n",
" return outputs, acc\n",
" else:\n",
" return outputs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 5. 训练模型\n",
"在训练模型前,需要设置模型的运行环境,这里我们设置模型在cpu上运行,并将其设置为动态图模式。"
]
},
{
"cell_type": "code",
"execution_count": 302,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch: 0, batch: 0, loss is: [3.13129952]\n",
"epoch: 0, batch: 100, loss is: [2.82868815]\n",
"epoch: 0, batch: 200, loss is: [2.5842488]\n",
"epoch: 0, batch: 300, loss is: [3.21580688]\n",
"epoch: 0, batch: 400, loss is: [3.03717391]\n",
"epoch: 0, batch: 500, loss is: [2.84022745]\n",
"epoch: 0, batch: 600, loss is: [2.85783756]\n",
"epoch: 0, batch: 700, loss is: [2.76853633]\n",
"epoch: 1, batch: 0, loss is: [3.13129952]\n",
"epoch: 1, batch: 100, loss is: [2.82868815]\n",
"epoch: 1, batch: 200, loss is: [2.5842488]\n",
"epoch: 1, batch: 300, loss is: [3.21580688]\n",
"epoch: 1, batch: 400, loss is: [3.03717391]\n",
"epoch: 1, batch: 500, loss is: [2.84022745]\n",
"epoch: 1, batch: 600, loss is: [2.85783756]\n",
"epoch: 1, batch: 700, loss is: [2.76853633]\n",
"epoch: 2, batch: 0, loss is: [3.13129952]\n",
"epoch: 2, batch: 100, loss is: [2.82868815]\n",
"epoch: 2, batch: 200, loss is: [2.5842488]\n",
"epoch: 2, batch: 300, loss is: [3.21580688]\n",
"epoch: 2, batch: 400, loss is: [3.03717391]\n",
"epoch: 2, batch: 500, loss is: [2.84022745]\n",
"epoch: 2, batch: 600, loss is: [2.85783756]\n",
"epoch: 2, batch: 700, loss is: [2.76853633]\n",
"epoch: 3, batch: 0, loss is: [3.13129952]\n",
"epoch: 3, batch: 100, loss is: [2.82868815]\n",
"epoch: 3, batch: 200, loss is: [2.5842488]\n",
"epoch: 3, batch: 300, loss is: [3.21580688]\n",
"epoch: 3, batch: 400, loss is: [3.03717391]\n",
"epoch: 3, batch: 500, loss is: [2.84022745]\n",
"epoch: 3, batch: 600, loss is: [2.85783756]\n",
"epoch: 3, batch: 700, loss is: [2.76853633]\n",
"epoch: 4, batch: 0, loss is: [3.13129952]\n",
"epoch: 4, batch: 100, loss is: [2.82868815]\n",
"epoch: 4, batch: 200, loss is: [2.5842488]\n",
"epoch: 4, batch: 300, loss is: [3.21580688]\n",
"epoch: 4, batch: 400, loss is: [3.03717391]\n",
"epoch: 4, batch: 500, loss is: [2.84022745]\n",
"epoch: 4, batch: 600, loss is: [2.85783756]\n",
"epoch: 4, batch: 700, loss is: [2.76853633]\n",
"epoch: 5, batch: 0, loss is: [3.13129952]\n",
"epoch: 5, batch: 100, loss is: [2.82868815]\n",
"epoch: 5, batch: 200, loss is: [2.5842488]\n",
"epoch: 5, batch: 300, loss is: [3.21580688]\n",
"epoch: 5, batch: 400, loss is: [3.03717391]\n",
"epoch: 5, batch: 500, loss is: [2.84022745]\n",
"epoch: 5, batch: 600, loss is: [2.85783756]\n",
"epoch: 5, batch: 700, loss is: [2.76853633]\n",
"epoch: 6, batch: 0, loss is: [3.13129952]\n",
"epoch: 6, batch: 100, loss is: [2.82868815]\n",
"epoch: 6, batch: 200, loss is: [2.5842488]\n",
"epoch: 6, batch: 300, loss is: [3.21580688]\n",
"epoch: 6, batch: 400, loss is: [3.03717391]\n",
"epoch: 6, batch: 500, loss is: [2.84022745]\n",
"epoch: 6, batch: 600, loss is: [2.85783756]\n",
"epoch: 6, batch: 700, loss is: [2.76853633]\n",
"epoch: 7, batch: 0, loss is: [3.13129952]\n",
"epoch: 7, batch: 100, loss is: [2.82868815]\n",
"epoch: 7, batch: 200, loss is: [2.5842488]\n",
"epoch: 7, batch: 300, loss is: [3.21580688]\n",
"epoch: 7, batch: 400, loss is: [3.03717391]\n",
"epoch: 7, batch: 500, loss is: [2.84022745]\n",
"epoch: 7, batch: 600, loss is: [2.85783756]\n",
"epoch: 7, batch: 700, loss is: [2.76853633]\n",
"epoch: 8, batch: 0, loss is: [3.13129952]\n",
"epoch: 8, batch: 100, loss is: [2.82868815]\n",
"epoch: 8, batch: 200, loss is: [2.5842488]\n",
"epoch: 8, batch: 300, loss is: [3.21580688]\n",
"epoch: 8, batch: 400, loss is: [3.03717391]\n",
"epoch: 8, batch: 500, loss is: [2.84022745]\n",
"epoch: 8, batch: 600, loss is: [2.85783756]\n",
"epoch: 8, batch: 700, loss is: [2.76853633]\n",
"epoch: 9, batch: 0, loss is: [3.13129952]\n",
"epoch: 9, batch: 100, loss is: [2.82868815]\n",
"epoch: 9, batch: 200, loss is: [2.5842488]\n",
"epoch: 9, batch: 300, loss is: [3.21580688]\n",
"epoch: 9, batch: 400, loss is: [3.03717391]\n",
"epoch: 9, batch: 500, loss is: [2.84022745]\n",
"epoch: 9, batch: 600, loss is: [2.85783756]\n",
"epoch: 9, batch: 700, loss is: [2.76853633]\n"
]
}
],
"source": [
"# 定义MNIST类的对象,以及优化器\n",
"mnist = Mnist(\"mnist\")\n",
"\n",
"# 定义优化器\n",
"optimizer = paddle.optimizer.Adam(learning_rate=0.1,parameter_list=mnist.parameters())\n",
"\n",
"EPOCH_NUM = 10\n",
"for epoch_id in range(EPOCH_NUM):\n",
" for batch_id, data in enumerate(train_loader()):\n",
" #准备数据\n",
" image_data, label_data = data[0], data[1]\n",
"\n",
" #前向计算的过程\n",
" predict = mnist(image_data)\n",
"\n",
" #计算损失,取一个批次样本损失的平均值\n",
" loss = paddle.nn.functional.cross_entropy(predict,label_data)\n",
" avg_loss = paddle.mean(loss)\n",
"\n",
" #每训练了100批次的数据,打印下当前Loss的情况\n",
" if batch_id % 100 == 0:\n",
" print(\"epoch: {}, batch: {}, loss is: {}\".format(epoch_id, batch_id, avg_loss.numpy()))\n",
"\n",
" #后向传播,更新参数的过程\n",
" avg_loss.backward()\n",
" optimizer.minimize(avg_loss)\n",
" mnist.clear_gradients()\n",
"\n",
"#保存模型参数\n",
"model_dict = mnist.state_dict()\n",
"paddle.imperative.save(model_dict, \"save_temp\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 6. 评估测试"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"mnist_eval = Mnist(\"mnist\") \n",
"model_dict, _ = paddle.imperative.load(\"save_temp\")\n",
"mnist_eval.load_dict(model_dict)\n",
"\n",
"#切换到评估模式\n",
"mnist_eval.eval()\n",
"\n",
"acc_set = []\n",
"avg_loss_set = []\n",
"\n",
"# 定义数据加载器\n",
"test_loader = load_data_new('eval')\n",
"for batch_id, data in enumerate(test_loader()):\n",
" image_data, label_data = data[0],data[1]\n",
" label_data = paddle.reshape(label_data,[-1,1])\n",
" \n",
" #前向计算的过程\n",
" predict, acc = mnist_eval(image_data, label_data)\n",
"\n",
" #计算损失,取一个批次样本损失的平均值\n",
" loss = paddle.nn.functional.cross_entropy(predict,label_data)\n",
" avg_loss = paddle.mean(loss)\n",
" acc_set.append(float(acc.numpy()))\n",
" avg_loss_set.append(float(avg_loss.numpy()))\n",
" \n",
"acc_val_mean = np.array(acc_set).mean()\n",
"avg_loss_val_mean = np.array(avg_loss_set).mean()\n",
"print(\"Eval avg_loss is: {}, acc is: {}\".format(avg_loss_val_mean, acc_val_mean))\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录