Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
484da788
B
book
项目概览
PaddlePaddle
/
book
通知
17
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
484da788
编写于
9月 04, 2020
作者:
D
dingjiaweiww
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/book
into course
上级
6cf94390
8dda1694
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
818 addition
and
368 deletion
+818
-368
paddle2.0_docs/image_search/image_search.ipynb
paddle2.0_docs/image_search/image_search.ipynb
+118
-368
paddle2.0_docs/seq2seq_with_attention/seq2seq_with_attention.ipynb
..._docs/seq2seq_with_attention/seq2seq_with_attention.ipynb
+700
-0
未找到文件。
paddle2.0_docs/image_search/image_search.ipynb
浏览文件 @
484da788
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
paddle2.0_docs/seq2seq_with_attention/seq2seq_with_attention.ipynb
0 → 100644
浏览文件 @
484da788
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 使用注意力机制的LSTM的机器翻译\n",
"\n",
"本示例教程介绍如何使用飞桨完成一个机器翻译任务。我们将会使用飞桨提供的LSTM的API,组建一个`sequence to sequence with attention`的机器翻译的模型,并在示例的数据集上完成从英文翻译成中文的机器翻译。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 环境设置\n",
"\n",
"本示例教程基于飞桨2.0版本。"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.0.0\n",
"89af2088b6e74bdfeef2d4d78e08461ed2aafee5\n"
]
}
],
"source": [
"import paddle\n",
"import paddle.nn.functional as F\n",
"import re\n",
"import numpy as np\n",
"\n",
"paddle.disable_static()\n",
"print(paddle.__version__)\n",
"print(paddle.__git_commit__)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 下载数据集\n",
"\n",
"我们将使用 [http://www.manythings.org/anki/](http://www.manythings.org/anki/) 提供的中英文的英汉句对作为数据集,来完成本任务。该数据集含有23610个中英文双语的句对。"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2020-09-04 14:06:10-- https://www.manythings.org/anki/cmn-eng.zip\n",
"Resolving www.manythings.org (www.manythings.org)... 104.24.108.196, 104.24.109.196, 172.67.173.198, ...\n",
"Connecting to www.manythings.org (www.manythings.org)|104.24.108.196|:443... connected.\n",
"HTTP request sent, awaiting response... 416 Requested Range Not Satisfiable\n",
"\n",
" The file is already fully retrieved; nothing to do.\n",
"\n",
"Archive: cmn-eng.zip\n"
]
}
],
"source": [
"!wget -c https://www.manythings.org/anki/cmn-eng.zip && unzip -f cmn-eng.zip"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 23610 cmn.txt\r\n"
]
}
],
"source": [
"!wc -l cmn.txt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 构建双语句对的数据结构\n",
"\n",
"接下来我们通过处理下载下来的双语句对的文本文件,将双语句对读入到python的数据结构中。这里做了如下的处理。\n",
"\n",
"- 对于英文,首先会把全部英文都变成小写,并只保留英文的单词。\n",
"- 对于中文,为了简便起见,未做分词,按照字做了切分。\n",
"- 为了后续的程序运行的更快,我们通过限制句子长度,和只保留部分英文单词开头的句子的方式,得到了一个较小的数据集。这样得到了一个有5508个句对的数据集。"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"MAX_LEN = 10"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5508\n",
"(['i', 'won'], ['我', '赢', '了', '。'])\n",
"(['he', 'ran'], ['他', '跑', '了', '。'])\n",
"(['i', 'quit'], ['我', '退', '出', '。'])\n",
"(['i', 'm', 'ok'], ['我', '沒', '事', '。'])\n",
"(['i', 'm', 'up'], ['我', '已', '经', '起', '来', '了', '。'])\n",
"(['we', 'try'], ['我', '们', '来', '试', '试', '。'])\n",
"(['he', 'came'], ['他', '来', '了', '。'])\n",
"(['he', 'runs'], ['他', '跑', '。'])\n",
"(['i', 'agree'], ['我', '同', '意', '。'])\n",
"(['i', 'm', 'ill'], ['我', '生', '病', '了', '。'])\n"
]
}
],
"source": [
"\n",
"lines = open('cmn.txt', encoding='utf-8').read().strip().split('\\n')\n",
"words_re = re.compile(r'\\w+')\n",
"\n",
"pairs = []\n",
"for l in lines:\n",
" en_sent, cn_sent, _ = l.split('\\t')\n",
" pairs.append((words_re.findall(en_sent.lower()), list(cn_sent)))\n",
"\n",
"# create a smaller dataset to make the demo process faster\n",
"filtered_pairs = []\n",
"\n",
"for x in pairs:\n",
" if len(x[0]) < MAX_LEN and len(x[1]) < MAX_LEN and \\\n",
" x[0][0] in ('i', 'you', 'he', 'she', 'we', 'they'):\n",
" filtered_pairs.append(x)\n",
"\n",
" \n",
"print(len(filtered_pairs))\n",
"for x in filtered_pairs[:10]: print(x) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 创建词表\n",
"\n",
"接下来我们分别创建中英文的词表,这两份词表会用来将中文的句子转换为词的ID构成的序列。词表中还加入了如下三个特殊的词:\n",
"- `<pad>`: 用来对较短的句子进行填充。\n",
"- `<bos>`: \"begin of sentence\", 表示句子的开始的特殊词。\n",
"- `<eos>`: \"end of sentence\", 表示句子的结束的特殊词。\n",
"\n",
"Note: 在实际的任务中,可能还需要通过`<unk>`(或者`<oov>`)特殊词来表示未在词表中出现的词。"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2539\n",
"2039\n"
]
}
],
"source": [
"en_vocab = {}\n",
"cn_vocab = {}\n",
"\n",
"# create special token for unkown, begin of sentence, end of sentence\n",
"en_vocab['<pad>'], en_vocab['<bos>'], en_vocab['<eos>'] = 0, 1, 2\n",
"cn_vocab['<pad>'], cn_vocab['<bos>'], cn_vocab['<eos>'] = 0, 1, 2\n",
"\n",
"#print(en_vocab, cn_vocab)\n",
"\n",
"en_idx, cn_idx = 3, 3\n",
"\n",
"for en, cn in filtered_pairs:\n",
" for w in en: \n",
" if w not in en_vocab: \n",
" en_vocab[w] = en_idx\n",
" en_idx += 1\n",
" for w in cn: \n",
" if w not in cn_vocab: \n",
" cn_vocab[w] = cn_idx\n",
" cn_idx += 1\n",
"\n",
"print(len(list(en_vocab)))\n",
"print(len(list(cn_vocab)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 创建padding过的数据集\n",
"\n",
"接下来根据词表,我们将会创建一份实际的用于训练的用numpy array组织起来的数据集。\n",
"- 所有的句子都通过`<pad>`补充成为了长度相同的句子。\n",
"- 对于英文句子(源语言),我们将其反转了过来,这会带来更好的翻译的效果。\n",
"- 所创建的`padded_cn_label_sents`是训练过程中的预测的目标,即,每个中文的当前词去预测下一个词是什么词。\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(5508, 11)\n",
"(5508, 12)\n",
"(5508, 12)\n"
]
}
],
"source": [
"# create padded datasets\n",
"padded_en_sents = []\n",
"padded_cn_sents = []\n",
"padded_cn_label_sents = []\n",
"for en, cn in filtered_pairs:\n",
" # reverse source sentence\n",
" padded_en_sent = en + ['<eos>'] + ['<pad>'] * (MAX_LEN - len(en))\n",
" padded_en_sent.reverse()\n",
" padded_cn_sent = ['<bos>'] + cn + ['<eos>'] + ['<pad>'] * (MAX_LEN - len(cn))\n",
" padded_cn_label_sent = cn + ['<eos>'] + ['<pad>'] * (MAX_LEN - len(cn) + 1) \n",
"\n",
" padded_en_sents.append([en_vocab[w] for w in padded_en_sent])\n",
" padded_cn_sents.append([cn_vocab[w] for w in padded_cn_sent])\n",
" padded_cn_label_sents.append([cn_vocab[w] for w in padded_cn_label_sent])\n",
"\n",
"train_en_sents = np.array(padded_en_sents)\n",
"train_cn_sents = np.array(padded_cn_sents)\n",
"train_cn_label_sents = np.array(padded_cn_label_sents)\n",
"\n",
"\n",
"print(train_en_sents.shape)\n",
"print(train_cn_sents.shape)\n",
"print(train_cn_label_sents.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 创建网络\n",
"\n",
"我们将会创建一个Encoder-AttentionDecoder架构的模型结构用来完成机器翻译任务。\n",
"首先我们将设置一些必要的网络结构中用到的参数。"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"embedding_size = 128\n",
"hidden_size = 256\n",
"num_encoder_lstm_layers = 1\n",
"en_vocab_size = len(list(en_vocab))\n",
"cn_vocab_size = len(list(cn_vocab))\n",
"epochs = 30\n",
"batch_size = 16"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Encoder部分\n",
"\n",
"在编码器的部分,我们通过查找完Embedding之后接一个LSTM的方式构建一个对源语言编码的网络。飞桨的RNN系列的API,除了LSTM之外,还提供了SimleRNN, GRU供使用,同时,还可以使用反向RNN,双向RNN,多层RNN等形式。也可以通过`dropout`参数设置是否对多层RNN的中间层进行`dropout`处理,来防止过拟合。\n",
"\n",
"除了使用序列到序列的RNN操作之外,也可以通过SimpleRNN, GRUCell, LSTMCell等API更灵活的创建单步的RNN计算,甚至通过集成RNNCellBase来实现自己的RNN计算单元。"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# encoder: simply learn representation of source sentence\n",
"class Encoder(paddle.nn.Layer):\n",
" def __init__(self):\n",
" super(Encoder, self).__init__()\n",
" self.emb = paddle.nn.Embedding(en_vocab_size, embedding_size,)\n",
" self.lstm = paddle.nn.LSTM(input_size=embedding_size, \n",
" hidden_size=hidden_size, \n",
" num_layers=num_encoder_lstm_layers)\n",
"\n",
" def forward(self, x):\n",
" x = self.emb(x)\n",
" x, (_, _) = self.lstm(x)\n",
" return x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# AttentionDecoder部分\n",
"\n",
"在解码器部分,我们通过一个带有注意力机制的LSTM来完成解码。\n",
"\n",
"- 单步的LSTM:在解码器的实现的部分,我们同样使用LSTM,与Encoder部分不同的是,下面的代码,每次只让LSTM往前计算一次。整体的recurrent部分,是在训练循环内完成的。\n",
"- 注意力机制:这里使用了一个由两个Linear组成的网络来完成注意力机制的计算,它用来计算出目标语言在每次翻译一个词的时候,需要对源语言当中的每个词需要赋予多少的权重。\n",
"- 对于第一次接触这样的网络结构来说,下面的代码在理解起来可能稍微有些复杂,你可以通过插入打印每个tensor在不同步骤时的形状的方式来更好的理解。"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# only move one step of LSTM, \n",
"# the recurrent loop is implemented inside training loop\n",
"class AttentionDecoder(paddle.nn.Layer):\n",
" def __init__(self):\n",
" super(AttentionDecoder, self).__init__()\n",
" self.emb = paddle.nn.Embedding(cn_vocab_size, embedding_size)\n",
" \n",
" # the lstm layer for to generate target sentence representation\n",
" self.lstm = paddle.nn.LSTM(input_size=embedding_size + hidden_size, \n",
" hidden_size=hidden_size)\n",
" \n",
" # for computing attention weights\n",
" self.attention_linear1 = paddle.nn.Linear(hidden_size * 2, hidden_size)\n",
" self.attention_linear2 = paddle.nn.Linear(hidden_size, 1)\n",
" \n",
" # for computing output logits\n",
" self.outlinear =paddle.nn.Linear(hidden_size, cn_vocab_size)\n",
"\n",
"\n",
" def forward(self, x, previous_hidden, previous_cell, encoder_outputs):\n",
" x = self.emb(x)\n",
" \n",
" attention_inputs = paddle.concat((encoder_outputs, \n",
" paddle.tile(previous_hidden, repeat_times=[1, MAX_LEN+1, 1])),\n",
" axis=-1\n",
" )\n",
"\n",
" attention_hidden = self.attention_linear1(attention_inputs)\n",
" attention_hidden = F.tanh(attention_hidden)\n",
" attention_logits = self.attention_linear2(attention_hidden)\n",
" attention_logits = paddle.squeeze(attention_logits)\n",
"\n",
" \n",
" attention_weights = F.softmax(attention_logits) \n",
" attention_weights = paddle.expand_as(paddle.unsqueeze(attention_weights, -1), \n",
" encoder_outputs)\n",
"\n",
" context_vector = paddle.multiply(encoder_outputs, attention_weights) \n",
" context_vector = paddle.reduce_sum(context_vector, 1)\n",
" context_vector = paddle.unsqueeze(context_vector, 1)\n",
" \n",
" lstm_input = paddle.concat((x, context_vector), axis=-1)\n",
"\n",
" # LSTM requirement to previous hidden/state: \n",
" # (number_of_layers * direction, batch, hidden)\n",
" previous_hidden = paddle.transpose(previous_hidden, [1, 0, 2])\n",
" previous_cell = paddle.transpose(previous_cell, [1, 0, 2])\n",
" \n",
" x, (hidden, cell) = self.lstm(lstm_input, (previous_hidden, previous_cell))\n",
" \n",
" # change the return to (batch, number_of_layers * direction, hidden)\n",
" hidden = paddle.transpose(hidden, [1, 0, 2])\n",
" cell = paddle.transpose(cell, [1, 0, 2])\n",
"\n",
" output = self.outlinear(hidden)\n",
" output = paddle.squeeze(output)\n",
" return output, (hidden, cell)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 训练模型\n",
"\n",
"接下来我们开始训练模型。\n",
"\n",
"- 在每个epoch开始之前,我们对训练数据进行了随机打乱。\n",
"- 我们通过多次调用`atten_decoder`,在这里实现了解码时的recurrent循环。\n",
"- `teacher forcing`策略: 在每次解码下一个词时,我们给定了训练数据当中的真实词作为了预测下一个词时的输入。相应的,你也可以尝试用模型预测的结果作为下一个词的输入。(或者混合使用)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch:0\n",
"iter 0, loss:[7.618719]\n",
"iter 200, loss:[2.9712436]\n",
"epoch:1\n",
"iter 0, loss:[2.926154]\n",
"iter 200, loss:[2.8847036]\n",
"epoch:2\n",
"iter 0, loss:[2.9981458]\n",
"iter 200, loss:[3.099761]\n",
"epoch:3\n",
"iter 0, loss:[2.6152773]\n",
"iter 200, loss:[2.5736806]\n",
"epoch:4\n",
"iter 0, loss:[2.418916]\n",
"iter 200, loss:[2.0204105]\n",
"epoch:5\n",
"iter 0, loss:[2.0660372]\n",
"iter 200, loss:[1.997014]\n",
"epoch:6\n",
"iter 0, loss:[1.7394348]\n",
"iter 200, loss:[1.9713217]\n",
"epoch:7\n",
"iter 0, loss:[2.2450879]\n",
"iter 200, loss:[1.8005365]\n",
"epoch:8\n",
"iter 0, loss:[1.7562586]\n",
"iter 200, loss:[1.8237668]\n",
"epoch:9\n",
"iter 0, loss:[1.3632518]\n",
"iter 200, loss:[1.6413273]\n",
"epoch:10\n",
"iter 0, loss:[1.0960134]\n",
"iter 200, loss:[1.4547268]\n",
"epoch:11\n",
"iter 0, loss:[1.4081496]\n",
"iter 200, loss:[1.4078153]\n",
"epoch:12\n",
"iter 0, loss:[1.1659987]\n",
"iter 200, loss:[1.1858114]\n",
"epoch:13\n",
"iter 0, loss:[1.3759178]\n",
"iter 200, loss:[1.2046292]\n",
"epoch:14\n",
"iter 0, loss:[0.8987882]\n",
"iter 200, loss:[1.1897587]\n",
"epoch:15\n",
"iter 0, loss:[0.83738756]\n",
"iter 200, loss:[0.78109366]\n",
"epoch:16\n",
"iter 0, loss:[0.84268856]\n",
"iter 200, loss:[0.9557387]\n",
"epoch:17\n",
"iter 0, loss:[0.643647]\n",
"iter 200, loss:[0.9286504]\n",
"epoch:18\n",
"iter 0, loss:[0.5729206]\n",
"iter 200, loss:[0.6324647]\n",
"epoch:19\n",
"iter 0, loss:[0.6614718]\n",
"iter 200, loss:[0.5292754]\n",
"epoch:20\n",
"iter 0, loss:[0.45713213]\n",
"iter 200, loss:[0.6192503]\n",
"epoch:21\n",
"iter 0, loss:[0.36670336]\n",
"iter 200, loss:[0.41927388]\n",
"epoch:22\n",
"iter 0, loss:[0.3294798]\n",
"iter 200, loss:[0.4599006]\n",
"epoch:23\n",
"iter 0, loss:[0.29158494]\n",
"iter 200, loss:[0.27783182]\n",
"epoch:24\n",
"iter 0, loss:[0.24686475]\n",
"iter 200, loss:[0.34916434]\n",
"epoch:25\n",
"iter 0, loss:[0.26881775]\n",
"iter 200, loss:[0.2400788]\n",
"epoch:26\n",
"iter 0, loss:[0.20649]\n",
"iter 200, loss:[0.212987]\n",
"epoch:27\n",
"iter 0, loss:[0.12560298]\n",
"iter 200, loss:[0.17958683]\n",
"epoch:28\n",
"iter 0, loss:[0.13129365]\n",
"iter 200, loss:[0.14788578]\n",
"epoch:29\n",
"iter 0, loss:[0.07885154]\n",
"iter 200, loss:[0.14729765]\n"
]
}
],
"source": [
"encoder = Encoder()\n",
"atten_decoder = AttentionDecoder()\n",
"\n",
"opt = paddle.optimizer.Adam(learning_rate=0.001, \n",
" parameters=encoder.parameters()+atten_decoder.parameters())\n",
"\n",
"for epoch in range(epochs):\n",
" print(\"epoch:{}\".format(epoch))\n",
"\n",
" # shuffle training data\n",
" perm = np.random.permutation(len(train_en_sents))\n",
" train_en_sents_shuffled = train_en_sents[perm]\n",
" train_cn_sents_shuffled = train_cn_sents[perm]\n",
" train_cn_label_sents_shuffled = train_cn_label_sents[perm]\n",
"\n",
" for iteration in range(train_en_sents_shuffled.shape[0] // batch_size):\n",
" x_data = train_en_sents_shuffled[(batch_size*iteration):(batch_size*(iteration+1))]\n",
" sent = paddle.to_tensor(x_data)\n",
" en_repr = encoder(sent)\n",
"\n",
" x_cn_data = train_cn_sents_shuffled[(batch_size*iteration):(batch_size*(iteration+1))]\n",
" x_cn_label_data = train_cn_label_sents_shuffled[(batch_size*iteration):(batch_size*(iteration+1))]\n",
"\n",
" # shape: (batch, num_layer(=1 here) * num_of_direction(=1 here) * hidden_size)\n",
" hidden = paddle.zeros([batch_size, 1, hidden_size])\n",
" cell = paddle.zeros([batch_size, 1, hidden_size])\n",
"\n",
" loss = paddle.zeros([1])\n",
" # the decoder recurrent loop mentioned above\n",
" for i in range(MAX_LEN + 2):\n",
" cn_word = paddle.to_tensor(x_cn_data[:,i:i+1])\n",
" cn_word_label = paddle.to_tensor(x_cn_label_data[:,i:i+1])\n",
"\n",
" logits, (hidden, cell) = atten_decoder(cn_word, hidden, cell, en_repr)\n",
" step_loss = F.softmax_with_cross_entropy(logits, cn_word_label)\n",
" avg_step_loss = paddle.mean(step_loss)\n",
" loss += avg_step_loss\n",
"\n",
" loss = loss / (MAX_LEN + 2)\n",
" if(iteration % 200 == 0):\n",
" print(\"iter {}, loss:{}\".format(iteration, loss.numpy()))\n",
"\n",
" loss.backward()\n",
" opt.minimize(loss)\n",
" encoder.clear_gradients()\n",
" atten_decoder.clear_gradients()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 使用模型进行机器翻译\n",
"\n",
"完成上面的模型训练之后,我们可以得到一个能够从英文翻译成中文的机器翻译模型。接下来我们通过一个greedy search来实现使用该模型完成实际的机器翻译。(实际的任务中,你可能需要用beam search算法来提升效果)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"he is poor\n",
"true: 他很穷。\n",
"pred: 他很穷。\n",
"i lent him a cd\n",
"true: 我借给他一盘CD。\n",
"pred: 我借给他一盘CD。\n",
"i m not so brave\n",
"true: 我没那么勇敢。\n",
"pred: 我没那么勇敢。\n",
"he goes to bed at eight o clock\n",
"true: 他八點上床睡覺。\n",
"pred: 他八點鐘也會遲到。\n",
"i know how old you are\n",
"true: 我知道你多大了。\n",
"pred: 我知道你多大了。\n",
"i m a detective\n",
"true: 我是个侦探。\n",
"pred: 我是个侦探。\n",
"i am the fastest runner\n",
"true: 我是跑得最快的人。\n",
"pred: 我是最快的跑者。\n",
"he got down the book from the shelf\n",
"true: 他從架上拿下書。\n",
"pred: 他從架上拿下書。\n",
"he arrived at the station at seven\n",
"true: 他7点到了火车站。\n",
"pred: 他7点到了火车站。\n",
"he fell down on the floor\n",
"true: 他摔倒在地。\n",
"pred: 他摔倒在地。\n"
]
}
],
"source": [
"encoder.eval()\n",
"atten_decoder.eval()\n",
"\n",
"num_of_exampels_to_evaluate = 10\n",
"\n",
"indices = np.random.choice(len(train_en_sents), num_of_exampels_to_evaluate, replace=False)\n",
"x_data = train_en_sents[indices]\n",
"sent = paddle.to_tensor(x_data)\n",
"en_repr = encoder(sent)\n",
"\n",
"word = np.array(\n",
" [[cn_vocab['<bos>']]] * num_of_exampels_to_evaluate\n",
")\n",
"word = paddle.to_tensor(word)\n",
"\n",
"hidden = paddle.zeros([num_of_exampels_to_evaluate, 1, hidden_size])\n",
"cell = paddle.zeros([num_of_exampels_to_evaluate, 1, hidden_size])\n",
"\n",
"decoded_sent = []\n",
"for i in range(MAX_LEN + 2):\n",
" logits, (hidden, cell) = atten_decoder(word, hidden, cell, en_repr)\n",
"\n",
" word = paddle.argmax(logits, axis=1)\n",
" decoded_sent.append(word.numpy())\n",
" word = paddle.unsqueeze(word, axis=-1)\n",
" \n",
"results = np.stack(decoded_sent, axis=1)\n",
"for i in range(num_of_exampels_to_evaluate):\n",
" en_input = \" \".join(filtered_pairs[indices[i]][0])\n",
" ground_truth_translate = \"\".join(filtered_pairs[indices[i]][1])\n",
" model_translate = \"\"\n",
" for k in results[i]:\n",
" w = list(cn_vocab)[k]\n",
" if w != '<pad>' and w != '<eos>':\n",
" model_translate += w\n",
" print(en_input)\n",
" print(\"true: {}\".format(ground_truth_translate))\n",
" print(\"pred: {}\".format(model_translate))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# The End\n",
"\n",
"你还可以通过变换网络结构,调整数据集,尝试不同的参数的方式来进一步提升本示例当中的机器翻译的效果。同时,也可以尝试在其他的类似的任务中用飞桨来完成实际的实践。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录