Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
3fa53567
B
book
项目概览
PaddlePaddle
/
book
通知
17
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3fa53567
编写于
9月 09, 2020
作者:
C
Chen Long
提交者:
GitHub
9月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix_test_loader (#889)
* fix_test_loader * fix_mnist_wrongs
上级
601a9386
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
81 addition
and
256 deletion
+81
-256
paddle2.0_docs/image_classification/mnist_lenet_classification.ipynb
...ocs/image_classification/mnist_lenet_classification.ipynb
+81
-256
未找到文件。
paddle2.0_docs/image_classification/mnist_lenet_classification.ipynb
浏览文件 @
3fa53567
...
...
@@ -19,7 +19,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 1
3
,
"metadata": {},
"outputs": [
{
...
...
@@ -46,7 +46,7 @@
},
{
"cell_type": "code",
"execution_count":
3
,
"execution_count":
14
,
"metadata": {},
"outputs": [
{
...
...
@@ -74,7 +74,7 @@
},
{
"cell_type": "code",
"execution_count":
4
,
"execution_count":
15
,
"metadata": {},
"outputs": [
{
...
...
@@ -112,12 +112,12 @@
"metadata": {},
"source": [
"## 组网\n",
"用paddle.nn下的API,如`Conv2d`、`
Pool2D`、`Linead
`完成LeNet的构建。"
"用paddle.nn下的API,如`Conv2d`、`
MaxPool2d`、`Linear
`完成LeNet的构建。"
]
},
{
"cell_type": "code",
"execution_count":
6
,
"execution_count":
18
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -141,7 +141,7 @@
" x = F.relu(x)\n",
" x = self.conv2(x)\n",
" x = self.max_pool2(x)\n",
" x = paddle.
reshape(x, shape=[-1, 16*5*5]
)\n",
" x = paddle.
flatten(x, start_axis=1,stop_axis=-1
)\n",
" x = self.linear1(x)\n",
" x = F.relu(x)\n",
" x = self.linear2(x)\n",
...
...
@@ -161,39 +161,39 @@
},
{
"cell_type": "code",
"execution_count":
7
,
"execution_count":
19
,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch: 0, batch_id: 0, loss is: [2.30
29077], acc is: [0.156
25]\n",
"epoch: 0, batch_id: 100, loss is: [1.
6757016], acc is: [0.8437
5]\n",
"epoch: 0, batch_id: 200, loss is: [1.5
340967], acc is: [0.9687
5]\n",
"epoch: 0, batch_id: 300, loss is: [1.
4943825], acc is: [0.98437
5]\n",
"epoch: 0, batch_id: 400, loss is: [1.5
084226], acc is: [1.
]\n",
"epoch: 0, batch_id: 500, loss is: [1.
5035012], acc is: [0.98437
5]\n",
"epoch: 0, batch_id: 600, loss is: [1.
4784969], acc is: [0.9843
75]\n",
"epoch: 0, batch_id: 700, loss is: [1.5
656701], acc is: [0.9687
5]\n",
"epoch: 0, batch_id: 800, loss is: [1.5
226105], acc is: [1.
]\n",
"epoch: 0, batch_id: 900, loss is: [1.5
094678], acc is: [1.
]\n",
"epoch: 1, batch_id: 0, loss is: [1.
4956206], acc is: [0.9
84375]\n",
"epoch: 1, batch_id: 100, loss is: [1.
4908005], acc is: [1.
]\n",
"epoch: 1, batch_id: 200, loss is: [1.
485649], acc is: [0.984375
]\n",
"epoch: 1, batch_id: 300, loss is: [1.
5090752
], acc is: [1.]\n",
"epoch: 1, batch_id: 400, loss is: [1.5
163708], acc is: [1.
]\n",
"epoch: 1, batch_id: 500, loss is: [1.4
863018], acc is: [0.984375
]\n",
"epoch: 1, batch_id: 600, loss is: [1.4
764814
], acc is: [0.984375]\n",
"epoch: 1, batch_id: 700, loss is: [1.
5496588
], acc is: [0.984375]\n",
"epoch: 1, batch_id: 800, loss is: [1.4
99818
7], acc is: [1.]\n",
"epoch: 1, batch_id: 900, loss is: [1.
5110929], acc is: [1.
]\n"
"epoch: 0, batch_id: 0, loss is: [2.30
79572], acc is: [0.1
25]\n",
"epoch: 0, batch_id: 100, loss is: [1.
7078608], acc is: [0.82812
5]\n",
"epoch: 0, batch_id: 200, loss is: [1.5
642334], acc is: [0.9062
5]\n",
"epoch: 0, batch_id: 300, loss is: [1.
7024238], acc is: [0.7812
5]\n",
"epoch: 0, batch_id: 400, loss is: [1.5
536337], acc is: [0.921875
]\n",
"epoch: 0, batch_id: 500, loss is: [1.
6908336], acc is: [0.82812
5]\n",
"epoch: 0, batch_id: 600, loss is: [1.
5622432], acc is: [0.9218
75]\n",
"epoch: 0, batch_id: 700, loss is: [1.5
251796], acc is: [0.95312
5]\n",
"epoch: 0, batch_id: 800, loss is: [1.5
698484], acc is: [0.890625
]\n",
"epoch: 0, batch_id: 900, loss is: [1.5
524453], acc is: [0.9375
]\n",
"epoch: 1, batch_id: 0, loss is: [1.
6443151], acc is: [0.
84375]\n",
"epoch: 1, batch_id: 100, loss is: [1.
5547533], acc is: [0.90625
]\n",
"epoch: 1, batch_id: 200, loss is: [1.
5019028], acc is: [1.
]\n",
"epoch: 1, batch_id: 300, loss is: [1.
4820204
], acc is: [1.]\n",
"epoch: 1, batch_id: 400, loss is: [1.5
215418], acc is: [0.984375
]\n",
"epoch: 1, batch_id: 500, loss is: [1.4
972374], acc is: [1.
]\n",
"epoch: 1, batch_id: 600, loss is: [1.4
930981
], acc is: [0.984375]\n",
"epoch: 1, batch_id: 700, loss is: [1.
4971689
], acc is: [0.984375]\n",
"epoch: 1, batch_id: 800, loss is: [1.4
61159
7], acc is: [1.]\n",
"epoch: 1, batch_id: 900, loss is: [1.
4903957], acc is: [0.984375
]\n"
]
}
],
"source": [
"import paddle\n",
"train_loader = paddle.io.DataLoader(train_dataset, places=paddle.CPUPlace(), batch_size=64)\n",
"train_loader = paddle.io.DataLoader(train_dataset, places=paddle.CPUPlace(), batch_size=64
, shuffle=True
)\n",
"# 加载训练集 batch_size 设为 64\n",
"def train(model):\n",
" model.train()\n",
...
...
@@ -229,23 +229,21 @@
},
{
"cell_type": "code",
"execution_count":
8
,
"execution_count":
20
,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"batch_id: 0, loss is: [1.4929559], acc is: [0.984375]\n",
"batch_id: 100, loss is: [1.4921299], acc is: [0.984375]\n",
"batch_id: 200, loss is: [1.5021144], acc is: [1.]\n",
"batch_id: 300, loss is: [1.4809179], acc is: [0.984375]\n",
"batch_id: 400, loss is: [1.4768506], acc is: [1.]\n",
"batch_id: 500, loss is: [1.4768407], acc is: [1.]\n",
"batch_id: 600, loss is: [1.476671], acc is: [0.984375]\n",
"batch_id: 700, loss is: [1.5093586], acc is: [1.]\n",
"batch_id: 800, loss is: [1.5057312], acc is: [1.]\n",
"batch_id: 900, loss is: [1.4923737], acc is: [1.]\n"
"batch_id: 0, loss is: [1.4767745], acc is: [1.]\n",
"batch_id: 20, loss is: [1.4841802], acc is: [0.984375]\n",
"batch_id: 40, loss is: [1.4997194], acc is: [1.]\n",
"batch_id: 60, loss is: [1.4895413], acc is: [1.]\n",
"batch_id: 80, loss is: [1.4668798], acc is: [1.]\n",
"batch_id: 100, loss is: [1.4611752], acc is: [1.]\n",
"batch_id: 120, loss is: [1.4613602], acc is: [1.]\n",
"batch_id: 140, loss is: [1.4923686], acc is: [1.]\n"
]
}
],
...
...
@@ -256,7 +254,7 @@
"def test(model):\n",
" model.eval()\n",
" batch_size = 64\n",
" for batch_id, data in enumerate(t
rain
_loader()):\n",
" for batch_id, data in enumerate(t
est
_loader()):\n",
" x_data = data[0]\n",
" y_data = data[1]\n",
" predicts = model(x_data)\n",
...
...
@@ -266,7 +264,7 @@
" avg_loss = paddle.mean(loss)\n",
" avg_acc = paddle.mean(acc)\n",
" avg_loss.backward()\n",
" if batch_id %
10
0 == 0:\n",
" if batch_id %
2
0 == 0:\n",
" print(\"batch_id: {}, loss is: {}, acc is: {}\".format(batch_id, avg_loss.numpy(), avg_acc.numpy()))\n",
"test(model)"
]
...
...
@@ -289,7 +287,7 @@
},
{
"cell_type": "code",
"execution_count":
9
,
"execution_count":
21
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -317,7 +315,7 @@
},
{
"cell_type": "code",
"execution_count":
11
,
"execution_count":
22
,
"metadata": {},
"outputs": [
{
...
...
@@ -325,202 +323,28 @@
"output_type": "stream",
"text": [
"Epoch 1/2\n",
"step 10/938 - loss: 1.5564 - acc_top1: 0.7773 - acc_top2: 0.8103 - 17ms/step\n",
"step 20/938 - loss: 1.5538 - acc_top1: 0.7787 - acc_top2: 0.8115 - 16ms/step\n",
"step 30/938 - loss: 1.5591 - acc_top1: 0.7801 - acc_top2: 0.8128 - 16ms/step\n",
"step 40/938 - loss: 1.5234 - acc_top1: 0.7813 - acc_top2: 0.8138 - 16ms/step\n",
"step 50/938 - loss: 1.6375 - acc_top1: 0.7827 - acc_top2: 0.8150 - 16ms/step\n",
"step 60/938 - loss: 1.5435 - acc_top1: 0.7836 - acc_top2: 0.8159 - 16ms/step\n",
"step 70/938 - loss: 1.5900 - acc_top1: 0.7849 - acc_top2: 0.8170 - 15ms/step\n",
"step 80/938 - loss: 1.5130 - acc_top1: 0.7861 - acc_top2: 0.8180 - 15ms/step\n",
"step 90/938 - loss: 1.6275 - acc_top1: 0.7873 - acc_top2: 0.8190 - 15ms/step\n",
"step 100/938 - loss: 1.5574 - acc_top1: 0.7884 - acc_top2: 0.8200 - 15ms/step\n",
"step 110/938 - loss: 1.5883 - acc_top1: 0.7894 - acc_top2: 0.8208 - 15ms/step\n",
"step 120/938 - loss: 1.5808 - acc_top1: 0.7903 - acc_top2: 0.8216 - 15ms/step\n",
"step 130/938 - loss: 1.5924 - acc_top1: 0.7913 - acc_top2: 0.8226 - 15ms/step\n",
"step 140/938 - loss: 1.5238 - acc_top1: 0.7924 - acc_top2: 0.8234 - 15ms/step\n",
"step 150/938 - loss: 1.6007 - acc_top1: 0.7933 - acc_top2: 0.8242 - 15ms/step\n",
"step 160/938 - loss: 1.6028 - acc_top1: 0.7942 - acc_top2: 0.8250 - 15ms/step\n",
"step 170/938 - loss: 1.5838 - acc_top1: 0.7952 - acc_top2: 0.8258 - 14ms/step\n",
"step 180/938 - loss: 1.6334 - acc_top1: 0.7958 - acc_top2: 0.8265 - 14ms/step\n",
"step 190/938 - loss: 1.6356 - acc_top1: 0.7966 - acc_top2: 0.8272 - 14ms/step\n",
"step 200/938 - loss: 1.7113 - acc_top1: 0.7973 - acc_top2: 0.8279 - 14ms/step\n",
"step 210/938 - loss: 1.5355 - acc_top1: 0.7980 - acc_top2: 0.8285 - 14ms/step\n",
"step 220/938 - loss: 1.5510 - acc_top1: 0.7989 - acc_top2: 0.8293 - 14ms/step\n",
"step 230/938 - loss: 1.5542 - acc_top1: 0.7997 - acc_top2: 0.8300 - 14ms/step\n",
"step 240/938 - loss: 1.5730 - acc_top1: 0.8007 - acc_top2: 0.8309 - 14ms/step\n",
"step 250/938 - loss: 1.5378 - acc_top1: 0.8016 - acc_top2: 0.8317 - 14ms/step\n",
"step 260/938 - loss: 1.5517 - acc_top1: 0.8026 - acc_top2: 0.8326 - 14ms/step\n",
"step 270/938 - loss: 1.5762 - acc_top1: 0.8033 - acc_top2: 0.8332 - 14ms/step\n",
"step 280/938 - loss: 1.5611 - acc_top1: 0.8041 - acc_top2: 0.8339 - 14ms/step\n",
"step 290/938 - loss: 1.6558 - acc_top1: 0.8046 - acc_top2: 0.8343 - 14ms/step\n",
"step 300/938 - loss: 1.5836 - acc_top1: 0.8052 - acc_top2: 0.8349 - 14ms/step\n",
"step 310/938 - loss: 1.5332 - acc_top1: 0.8060 - acc_top2: 0.8356 - 14ms/step\n",
"step 320/938 - loss: 1.5105 - acc_top1: 0.8068 - acc_top2: 0.8362 - 14ms/step\n",
"step 330/938 - loss: 1.5325 - acc_top1: 0.8075 - acc_top2: 0.8368 - 14ms/step\n",
"step 340/938 - loss: 1.5779 - acc_top1: 0.8079 - acc_top2: 0.8371 - 14ms/step\n",
"step 350/938 - loss: 1.5903 - acc_top1: 0.8085 - acc_top2: 0.8377 - 14ms/step\n",
"step 360/938 - loss: 1.5884 - acc_top1: 0.8091 - acc_top2: 0.8382 - 14ms/step\n",
"step 370/938 - loss: 1.6248 - acc_top1: 0.8098 - acc_top2: 0.8388 - 14ms/step\n",
"step 380/938 - loss: 1.6995 - acc_top1: 0.8103 - acc_top2: 0.8392 - 14ms/step\n",
"step 390/938 - loss: 1.5695 - acc_top1: 0.8109 - acc_top2: 0.8397 - 14ms/step\n",
"step 400/938 - loss: 1.6015 - acc_top1: 0.8116 - acc_top2: 0.8403 - 14ms/step\n",
"step 410/938 - loss: 1.5643 - acc_top1: 0.8123 - acc_top2: 0.8409 - 14ms/step\n",
"step 420/938 - loss: 1.5745 - acc_top1: 0.8128 - acc_top2: 0.8413 - 14ms/step\n",
"step 430/938 - loss: 1.5517 - acc_top1: 0.8133 - acc_top2: 0.8417 - 14ms/step\n",
"step 440/938 - loss: 1.6097 - acc_top1: 0.8137 - acc_top2: 0.8419 - 14ms/step\n",
"step 450/938 - loss: 1.5700 - acc_top1: 0.8142 - acc_top2: 0.8424 - 14ms/step\n",
"step 460/938 - loss: 1.5696 - acc_top1: 0.8149 - acc_top2: 0.8430 - 14ms/step\n",
"step 470/938 - loss: 1.5713 - acc_top1: 0.8156 - acc_top2: 0.8436 - 14ms/step\n",
"step 480/938 - loss: 1.5909 - acc_top1: 0.8162 - acc_top2: 0.8440 - 14ms/step\n",
"step 490/938 - loss: 1.6004 - acc_top1: 0.8166 - acc_top2: 0.8443 - 14ms/step\n",
"step 500/938 - loss: 1.4905 - acc_top1: 0.8171 - acc_top2: 0.8448 - 14ms/step\n",
"step 510/938 - loss: 1.5842 - acc_top1: 0.8178 - acc_top2: 0.8453 - 14ms/step\n",
"step 520/938 - loss: 1.5237 - acc_top1: 0.8185 - acc_top2: 0.8459 - 14ms/step\n",
"step 530/938 - loss: 1.5130 - acc_top1: 0.8190 - acc_top2: 0.8464 - 14ms/step\n",
"step 540/938 - loss: 1.5345 - acc_top1: 0.8195 - acc_top2: 0.8468 - 14ms/step\n",
"step 550/938 - loss: 1.5513 - acc_top1: 0.8199 - acc_top2: 0.8472 - 14ms/step\n",
"step 560/938 - loss: 1.5704 - acc_top1: 0.8206 - acc_top2: 0.8480 - 14ms/step\n",
"step 570/938 - loss: 1.5481 - acc_top1: 0.8215 - acc_top2: 0.8490 - 14ms/step\n",
"step 580/938 - loss: 1.5087 - acc_top1: 0.8225 - acc_top2: 0.8500 - 14ms/step\n",
"step 590/938 - loss: 1.4844 - acc_top1: 0.8236 - acc_top2: 0.8510 - 14ms/step\n",
"step 600/938 - loss: 1.5162 - acc_top1: 0.8246 - acc_top2: 0.8520 - 14ms/step\n",
"step 610/938 - loss: 1.4730 - acc_top1: 0.8256 - acc_top2: 0.8530 - 14ms/step\n",
"step 620/938 - loss: 1.5118 - acc_top1: 0.8266 - acc_top2: 0.8540 - 14ms/step\n",
"step 630/938 - loss: 1.4760 - acc_top1: 0.8276 - acc_top2: 0.8550 - 14ms/step\n",
"step 640/938 - loss: 1.4942 - acc_top1: 0.8286 - acc_top2: 0.8559 - 14ms/step\n",
"step 650/938 - loss: 1.5077 - acc_top1: 0.8295 - acc_top2: 0.8568 - 14ms/step\n",
"step 660/938 - loss: 1.4973 - acc_top1: 0.8305 - acc_top2: 0.8577 - 14ms/step\n",
"step 670/938 - loss: 1.5091 - acc_top1: 0.8314 - acc_top2: 0.8586 - 14ms/step\n",
"step 680/938 - loss: 1.4692 - acc_top1: 0.8323 - acc_top2: 0.8595 - 14ms/step\n",
"step 690/938 - loss: 1.4746 - acc_top1: 0.8332 - acc_top2: 0.8604 - 14ms/step\n",
"step 700/938 - loss: 1.4619 - acc_top1: 0.8342 - acc_top2: 0.8613 - 14ms/step\n",
"step 710/938 - loss: 1.5545 - acc_top1: 0.8350 - acc_top2: 0.8621 - 14ms/step\n",
"step 720/938 - loss: 1.4629 - acc_top1: 0.8360 - acc_top2: 0.8630 - 14ms/step\n",
"step 730/938 - loss: 1.4738 - acc_top1: 0.8369 - acc_top2: 0.8638 - 14ms/step\n",
"step 740/938 - loss: 1.4804 - acc_top1: 0.8378 - acc_top2: 0.8647 - 14ms/step\n",
"step 750/938 - loss: 1.4808 - acc_top1: 0.8386 - acc_top2: 0.8655 - 14ms/step\n",
"step 760/938 - loss: 1.4695 - acc_top1: 0.8395 - acc_top2: 0.8664 - 14ms/step\n",
"step 770/938 - loss: 1.4899 - acc_top1: 0.8403 - acc_top2: 0.8671 - 14ms/step\n",
"step 780/938 - loss: 1.5244 - acc_top1: 0.8411 - acc_top2: 0.8679 - 14ms/step\n",
"step 790/938 - loss: 1.5005 - acc_top1: 0.8418 - acc_top2: 0.8686 - 14ms/step\n",
"step 800/938 - loss: 1.4614 - acc_top1: 0.8427 - acc_top2: 0.8694 - 14ms/step\n",
"step 810/938 - loss: 1.5227 - acc_top1: 0.8434 - acc_top2: 0.8702 - 14ms/step\n",
"step 820/938 - loss: 1.4852 - acc_top1: 0.8442 - acc_top2: 0.8709 - 14ms/step\n",
"step 830/938 - loss: 1.4978 - acc_top1: 0.8450 - acc_top2: 0.8717 - 14ms/step\n",
"step 840/938 - loss: 1.4686 - acc_top1: 0.8458 - acc_top2: 0.8724 - 14ms/step\n",
"step 850/938 - loss: 1.4729 - acc_top1: 0.8466 - acc_top2: 0.8732 - 14ms/step\n",
"step 860/938 - loss: 1.4715 - acc_top1: 0.8473 - acc_top2: 0.8739 - 14ms/step\n",
"step 870/938 - loss: 1.5115 - acc_top1: 0.8481 - acc_top2: 0.8746 - 14ms/step\n",
"step 880/938 - loss: 1.4826 - acc_top1: 0.8488 - acc_top2: 0.8753 - 14ms/step\n",
"step 890/938 - loss: 1.4619 - acc_top1: 0.8496 - acc_top2: 0.8760 - 14ms/step\n",
"step 900/938 - loss: 1.4775 - acc_top1: 0.8504 - acc_top2: 0.8767 - 14ms/step\n",
"step 910/938 - loss: 1.4614 - acc_top1: 0.8511 - acc_top2: 0.8773 - 14ms/step\n",
"step 920/938 - loss: 1.4762 - acc_top1: 0.8518 - acc_top2: 0.8780 - 14ms/step\n",
"step 930/938 - loss: 1.5233 - acc_top1: 0.8525 - acc_top2: 0.8787 - 14ms/step\n",
"step 938/938 - loss: 1.4616 - acc_top1: 0.8531 - acc_top2: 0.8792 - 14ms/step\n",
"step 100/938 - loss: 1.5644 - acc_top1: 0.6281 - acc_top2: 0.7145 - 14ms/step\n",
"step 200/938 - loss: 1.6221 - acc_top1: 0.7634 - acc_top2: 0.8380 - 13ms/step\n",
"step 300/938 - loss: 1.5123 - acc_top1: 0.8215 - acc_top2: 0.8835 - 13ms/step\n",
"step 400/938 - loss: 1.4791 - acc_top1: 0.8530 - acc_top2: 0.9084 - 13ms/step\n",
"step 500/938 - loss: 1.4904 - acc_top1: 0.8733 - acc_top2: 0.9235 - 13ms/step\n",
"step 600/938 - loss: 1.5101 - acc_top1: 0.8875 - acc_top2: 0.9341 - 13ms/step\n",
"step 700/938 - loss: 1.4642 - acc_top1: 0.8983 - acc_top2: 0.9417 - 13ms/step\n",
"step 800/938 - loss: 1.4789 - acc_top1: 0.9069 - acc_top2: 0.9477 - 13ms/step\n",
"step 900/938 - loss: 1.4773 - acc_top1: 0.9135 - acc_top2: 0.9523 - 13ms/step\n",
"step 938/938 - loss: 1.4714 - acc_top1: 0.9157 - acc_top2: 0.9538 - 13ms/step\n",
"save checkpoint at /Users/chenlong/online_repo/book/paddle2.0_docs/image_classification/mnist_checkpoint/0\n",
"Epoch 2/2\n",
"step 10/938 - loss: 1.5034 - acc_top1: 0.9688 - acc_top2: 0.9891 - 16ms/step\n",
"step 20/938 - loss: 1.4879 - acc_top1: 0.9711 - acc_top2: 0.9898 - 16ms/step\n",
"step 30/938 - loss: 1.4661 - acc_top1: 0.9734 - acc_top2: 0.9906 - 15ms/step\n",
"step 40/938 - loss: 1.5272 - acc_top1: 0.9746 - acc_top2: 0.9914 - 15ms/step\n",
"step 50/938 - loss: 1.4768 - acc_top1: 0.9747 - acc_top2: 0.9919 - 15ms/step\n",
"step 60/938 - loss: 1.4924 - acc_top1: 0.9719 - acc_top2: 0.9898 - 15ms/step\n",
"step 70/938 - loss: 1.4800 - acc_top1: 0.9725 - acc_top2: 0.9906 - 15ms/step\n",
"step 80/938 - loss: 1.5056 - acc_top1: 0.9734 - acc_top2: 0.9914 - 15ms/step\n",
"step 90/938 - loss: 1.4628 - acc_top1: 0.9740 - acc_top2: 0.9915 - 15ms/step\n",
"step 100/938 - loss: 1.4794 - acc_top1: 0.9745 - acc_top2: 0.9919 - 15ms/step\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"step 110/938 - loss: 1.4665 - acc_top1: 0.9749 - acc_top2: 0.9918 - 15ms/step\n",
"step 120/938 - loss: 1.4769 - acc_top1: 0.9755 - acc_top2: 0.9917 - 15ms/step\n",
"step 130/938 - loss: 1.4883 - acc_top1: 0.9755 - acc_top2: 0.9918 - 15ms/step\n",
"step 140/938 - loss: 1.4779 - acc_top1: 0.9757 - acc_top2: 0.9920 - 15ms/step\n",
"step 150/938 - loss: 1.4926 - acc_top1: 0.9751 - acc_top2: 0.9922 - 15ms/step\n",
"step 160/938 - loss: 1.5458 - acc_top1: 0.9750 - acc_top2: 0.9924 - 15ms/step\n",
"step 170/938 - loss: 1.5166 - acc_top1: 0.9748 - acc_top2: 0.9924 - 15ms/step\n",
"step 180/938 - loss: 1.4676 - acc_top1: 0.9748 - acc_top2: 0.9923 - 14ms/step\n",
"step 190/938 - loss: 1.4773 - acc_top1: 0.9748 - acc_top2: 0.9924 - 15ms/step\n",
"step 200/938 - loss: 1.4893 - acc_top1: 0.9752 - acc_top2: 0.9928 - 15ms/step\n",
"step 210/938 - loss: 1.5408 - acc_top1: 0.9751 - acc_top2: 0.9926 - 15ms/step\n",
"step 220/938 - loss: 1.4934 - acc_top1: 0.9753 - acc_top2: 0.9925 - 15ms/step\n",
"step 230/938 - loss: 1.5162 - acc_top1: 0.9753 - acc_top2: 0.9925 - 15ms/step\n",
"step 240/938 - loss: 1.5097 - acc_top1: 0.9752 - acc_top2: 0.9926 - 14ms/step\n",
"step 250/938 - loss: 1.5264 - acc_top1: 0.9752 - acc_top2: 0.9927 - 14ms/step\n",
"step 260/938 - loss: 1.4843 - acc_top1: 0.9752 - acc_top2: 0.9926 - 14ms/step\n",
"step 270/938 - loss: 1.4818 - acc_top1: 0.9753 - acc_top2: 0.9927 - 14ms/step\n",
"step 280/938 - loss: 1.4627 - acc_top1: 0.9755 - acc_top2: 0.9925 - 14ms/step\n",
"step 290/938 - loss: 1.4932 - acc_top1: 0.9755 - acc_top2: 0.9923 - 14ms/step\n",
"step 300/938 - loss: 1.4641 - acc_top1: 0.9754 - acc_top2: 0.9924 - 14ms/step\n",
"step 310/938 - loss: 1.4908 - acc_top1: 0.9757 - acc_top2: 0.9925 - 14ms/step\n",
"step 320/938 - loss: 1.4910 - acc_top1: 0.9756 - acc_top2: 0.9926 - 14ms/step\n",
"step 330/938 - loss: 1.4693 - acc_top1: 0.9754 - acc_top2: 0.9925 - 14ms/step\n",
"step 340/938 - loss: 1.4968 - acc_top1: 0.9755 - acc_top2: 0.9925 - 14ms/step\n",
"step 350/938 - loss: 1.4963 - acc_top1: 0.9754 - acc_top2: 0.9923 - 14ms/step\n",
"step 360/938 - loss: 1.5005 - acc_top1: 0.9755 - acc_top2: 0.9925 - 14ms/step\n",
"step 370/938 - loss: 1.4683 - acc_top1: 0.9756 - acc_top2: 0.9925 - 14ms/step\n",
"step 380/938 - loss: 1.5069 - acc_top1: 0.9757 - acc_top2: 0.9925 - 14ms/step\n",
"step 390/938 - loss: 1.4619 - acc_top1: 0.9759 - acc_top2: 0.9926 - 14ms/step\n",
"step 400/938 - loss: 1.4627 - acc_top1: 0.9761 - acc_top2: 0.9928 - 14ms/step\n",
"step 410/938 - loss: 1.5207 - acc_top1: 0.9760 - acc_top2: 0.9928 - 14ms/step\n",
"step 420/938 - loss: 1.5234 - acc_top1: 0.9758 - acc_top2: 0.9928 - 14ms/step\n",
"step 430/938 - loss: 1.4797 - acc_top1: 0.9759 - acc_top2: 0.9930 - 14ms/step\n",
"step 440/938 - loss: 1.4618 - acc_top1: 0.9759 - acc_top2: 0.9929 - 14ms/step\n",
"step 450/938 - loss: 1.4760 - acc_top1: 0.9759 - acc_top2: 0.9930 - 14ms/step\n",
"step 460/938 - loss: 1.4612 - acc_top1: 0.9760 - acc_top2: 0.9929 - 14ms/step\n",
"step 470/938 - loss: 1.4922 - acc_top1: 0.9759 - acc_top2: 0.9929 - 14ms/step\n",
"step 480/938 - loss: 1.4831 - acc_top1: 0.9761 - acc_top2: 0.9930 - 14ms/step\n",
"step 490/938 - loss: 1.4914 - acc_top1: 0.9762 - acc_top2: 0.9931 - 14ms/step\n",
"step 500/938 - loss: 1.4861 - acc_top1: 0.9760 - acc_top2: 0.9931 - 14ms/step\n",
"step 510/938 - loss: 1.4703 - acc_top1: 0.9760 - acc_top2: 0.9931 - 14ms/step\n",
"step 520/938 - loss: 1.5457 - acc_top1: 0.9755 - acc_top2: 0.9930 - 14ms/step\n",
"step 530/938 - loss: 1.4808 - acc_top1: 0.9754 - acc_top2: 0.9929 - 14ms/step\n",
"step 540/938 - loss: 1.4831 - acc_top1: 0.9753 - acc_top2: 0.9929 - 14ms/step\n",
"step 550/938 - loss: 1.5072 - acc_top1: 0.9753 - acc_top2: 0.9929 - 14ms/step\n",
"step 560/938 - loss: 1.4628 - acc_top1: 0.9753 - acc_top2: 0.9929 - 14ms/step\n",
"step 570/938 - loss: 1.4721 - acc_top1: 0.9753 - acc_top2: 0.9929 - 14ms/step\n",
"step 580/938 - loss: 1.4768 - acc_top1: 0.9755 - acc_top2: 0.9929 - 14ms/step\n",
"step 590/938 - loss: 1.4793 - acc_top1: 0.9755 - acc_top2: 0.9930 - 14ms/step\n",
"step 600/938 - loss: 1.4916 - acc_top1: 0.9754 - acc_top2: 0.9929 - 14ms/step\n",
"step 610/938 - loss: 1.4612 - acc_top1: 0.9755 - acc_top2: 0.9930 - 14ms/step\n",
"step 620/938 - loss: 1.5034 - acc_top1: 0.9753 - acc_top2: 0.9930 - 14ms/step\n",
"step 630/938 - loss: 1.4640 - acc_top1: 0.9754 - acc_top2: 0.9930 - 14ms/step\n",
"step 640/938 - loss: 1.4822 - acc_top1: 0.9756 - acc_top2: 0.9931 - 14ms/step\n",
"step 650/938 - loss: 1.4955 - acc_top1: 0.9756 - acc_top2: 0.9932 - 14ms/step\n",
"step 660/938 - loss: 1.4615 - acc_top1: 0.9757 - acc_top2: 0.9933 - 14ms/step\n",
"step 670/938 - loss: 1.5060 - acc_top1: 0.9757 - acc_top2: 0.9932 - 14ms/step\n",
"step 680/938 - loss: 1.4640 - acc_top1: 0.9758 - acc_top2: 0.9933 - 14ms/step\n",
"step 690/938 - loss: 1.5070 - acc_top1: 0.9759 - acc_top2: 0.9933 - 14ms/step\n",
"step 700/938 - loss: 1.4615 - acc_top1: 0.9761 - acc_top2: 0.9933 - 14ms/step\n",
"step 710/938 - loss: 1.5210 - acc_top1: 0.9760 - acc_top2: 0.9933 - 14ms/step\n",
"step 720/938 - loss: 1.5154 - acc_top1: 0.9761 - acc_top2: 0.9933 - 14ms/step\n",
"step 730/938 - loss: 1.4965 - acc_top1: 0.9760 - acc_top2: 0.9933 - 14ms/step\n",
"step 740/938 - loss: 1.4612 - acc_top1: 0.9761 - acc_top2: 0.9933 - 14ms/step\n",
"step 750/938 - loss: 1.4878 - acc_top1: 0.9761 - acc_top2: 0.9934 - 14ms/step\n",
"step 760/938 - loss: 1.4775 - acc_top1: 0.9761 - acc_top2: 0.9933 - 14ms/step\n",
"step 770/938 - loss: 1.4834 - acc_top1: 0.9762 - acc_top2: 0.9933 - 14ms/step\n",
"step 780/938 - loss: 1.4661 - acc_top1: 0.9763 - acc_top2: 0.9934 - 14ms/step\n",
"step 790/938 - loss: 1.4895 - acc_top1: 0.9764 - acc_top2: 0.9934 - 14ms/step\n",
"step 800/938 - loss: 1.4767 - acc_top1: 0.9765 - acc_top2: 0.9934 - 14ms/step\n",
"step 810/938 - loss: 1.4779 - acc_top1: 0.9767 - acc_top2: 0.9935 - 14ms/step\n",
"step 820/938 - loss: 1.4768 - acc_top1: 0.9766 - acc_top2: 0.9935 - 14ms/step\n",
"step 830/938 - loss: 1.4630 - acc_top1: 0.9767 - acc_top2: 0.9935 - 14ms/step\n",
"step 840/938 - loss: 1.4612 - acc_top1: 0.9767 - acc_top2: 0.9936 - 14ms/step\n",
"step 850/938 - loss: 1.4993 - acc_top1: 0.9766 - acc_top2: 0.9935 - 14ms/step\n",
"step 860/938 - loss: 1.4817 - acc_top1: 0.9766 - acc_top2: 0.9936 - 14ms/step\n",
"step 870/938 - loss: 1.4786 - acc_top1: 0.9766 - acc_top2: 0.9935 - 14ms/step\n",
"step 880/938 - loss: 1.4772 - acc_top1: 0.9765 - acc_top2: 0.9935 - 14ms/step\n",
"step 890/938 - loss: 1.4646 - acc_top1: 0.9766 - acc_top2: 0.9936 - 14ms/step\n",
"step 900/938 - loss: 1.4813 - acc_top1: 0.9766 - acc_top2: 0.9936 - 14ms/step\n",
"step 910/938 - loss: 1.4815 - acc_top1: 0.9767 - acc_top2: 0.9936 - 14ms/step\n",
"step 920/938 - loss: 1.4854 - acc_top1: 0.9767 - acc_top2: 0.9936 - 14ms/step\n",
"step 930/938 - loss: 1.4890 - acc_top1: 0.9769 - acc_top2: 0.9936 - 14ms/step\n",
"step 938/938 - loss: 1.4617 - acc_top1: 0.9769 - acc_top2: 0.9937 - 14ms/step\n",
"step 100/938 - loss: 1.4863 - acc_top1: 0.9695 - acc_top2: 0.9897 - 13ms/step\n",
"step 200/938 - loss: 1.4883 - acc_top1: 0.9707 - acc_top2: 0.9912 - 13ms/step\n",
"step 300/938 - loss: 1.4695 - acc_top1: 0.9720 - acc_top2: 0.9910 - 13ms/step\n",
"step 400/938 - loss: 1.4628 - acc_top1: 0.9720 - acc_top2: 0.9915 - 13ms/step\n",
"step 500/938 - loss: 1.5079 - acc_top1: 0.9727 - acc_top2: 0.9918 - 13ms/step\n",
"step 600/938 - loss: 1.4803 - acc_top1: 0.9727 - acc_top2: 0.9919 - 13ms/step\n",
"step 700/938 - loss: 1.4612 - acc_top1: 0.9732 - acc_top2: 0.9923 - 13ms/step\n",
"step 800/938 - loss: 1.4755 - acc_top1: 0.9732 - acc_top2: 0.9923 - 13ms/step\n",
"step 900/938 - loss: 1.4698 - acc_top1: 0.9732 - acc_top2: 0.9922 - 13ms/step\n",
"step 938/938 - loss: 1.4764 - acc_top1: 0.9734 - acc_top2: 0.9923 - 13ms/step\n",
"save checkpoint at /Users/chenlong/online_repo/book/paddle2.0_docs/image_classification/mnist_checkpoint/1\n",
"save checkpoint at /Users/chenlong/online_repo/book/paddle2.0_docs/image_classification/mnist_checkpoint/final\n"
]
...
...
@@ -530,6 +354,7 @@
"model.fit(train_dataset,\n",
" epochs=2,\n",
" batch_size=64,\n",
" log_freq=100,\n",
" save_dir='mnist_checkpoint')"
]
},
...
...
@@ -542,7 +367,7 @@
},
{
"cell_type": "code",
"execution_count":
12
,
"execution_count":
23
,
"metadata": {},
"outputs": [
{
...
...
@@ -550,32 +375,32 @@
"output_type": "stream",
"text": [
"Eval begin...\n",
"step 10/157 - loss: 1.5
023 - acc_top1: 0.9781 - acc_top2: 0.9969
- 7ms/step\n",
"step 20/157 - loss: 1.5
326 - acc_top1: 0.9750 - acc_top2: 0.9953
- 7ms/step\n",
"step 30/157 - loss: 1.
4881 - acc_top1: 0.9745 - acc_top2: 0.9943
- 7ms/step\n",
"step 40/157 - loss: 1.4
703 - acc_top1: 0.9715 - acc_top2: 0.9934 - 6
ms/step\n",
"step 50/157 - loss: 1.47
93 - acc_top1: 0.9728 - acc_top2: 0.9934 - 6
ms/step\n",
"step 60/157 - loss: 1.5
338 - acc_top1: 0.9721 - acc_top2: 0.9924
- 6ms/step\n",
"step 70/157 - loss: 1.480
1 - acc_top1: 0.9721 - acc_top2: 0.9922
- 6ms/step\n",
"step 80/157 - loss: 1.47
63 - acc_top1: 0.9725 - acc_top2: 0.9928
- 6ms/step\n",
"step 90/157 - loss: 1.4
682 - acc_top1: 0.9747 - acc_top2: 0.9936
- 6ms/step\n",
"step 100/157 - loss: 1.4
780 - acc_top1: 0.9758 - acc_top2: 0.9939
- 6ms/step\n",
"step 110/157 - loss: 1.46
86 - acc_top1: 0.9763 - acc_top2: 0.9942
- 6ms/step\n",
"step 120/157 - loss: 1.4
624 - acc_top1: 0.9780 - acc_top2: 0.9947
- 6ms/step\n",
"step 130/157 - loss: 1.4
968 - acc_top1: 0.9787 - acc_top2: 0.9948
- 6ms/step\n",
"step 140/157 - loss: 1.4612 - acc_top1: 0.97
98 - acc_top2: 0.9952
- 6ms/step\n",
"step 150/157 - loss: 1.4
613 - acc_top1: 0.9806 - acc_top2: 0.9955
- 6ms/step\n",
"step 157/157 - loss: 1.4612 - acc_top1: 0.9
803 - acc_top2: 0.9955
- 6ms/step\n",
"step 10/157 - loss: 1.5
238 - acc_top1: 0.9750 - acc_top2: 0.9938
- 7ms/step\n",
"step 20/157 - loss: 1.5
143 - acc_top1: 0.9727 - acc_top2: 0.9922
- 7ms/step\n",
"step 30/157 - loss: 1.
5290 - acc_top1: 0.9698 - acc_top2: 0.9932
- 7ms/step\n",
"step 40/157 - loss: 1.4
624 - acc_top1: 0.9684 - acc_top2: 0.9930 - 7
ms/step\n",
"step 50/157 - loss: 1.47
71 - acc_top1: 0.9697 - acc_top2: 0.9925 - 7
ms/step\n",
"step 60/157 - loss: 1.5
066 - acc_top1: 0.9701 - acc_top2: 0.9922
- 6ms/step\n",
"step 70/157 - loss: 1.480
4 - acc_top1: 0.9699 - acc_top2: 0.9920
- 6ms/step\n",
"step 80/157 - loss: 1.47
18 - acc_top1: 0.9707 - acc_top2: 0.9930
- 6ms/step\n",
"step 90/157 - loss: 1.4
874 - acc_top1: 0.9726 - acc_top2: 0.9934
- 6ms/step\n",
"step 100/157 - loss: 1.4
612 - acc_top1: 0.9736 - acc_top2: 0.9936
- 6ms/step\n",
"step 110/157 - loss: 1.46
12 - acc_top1: 0.9746 - acc_top2: 0.9938
- 6ms/step\n",
"step 120/157 - loss: 1.4
763 - acc_top1: 0.9763 - acc_top2: 0.9941
- 6ms/step\n",
"step 130/157 - loss: 1.4
786 - acc_top1: 0.9764 - acc_top2: 0.9935
- 6ms/step\n",
"step 140/157 - loss: 1.4612 - acc_top1: 0.97
75 - acc_top2: 0.9939
- 6ms/step\n",
"step 150/157 - loss: 1.4
894 - acc_top1: 0.9785 - acc_top2: 0.9943
- 6ms/step\n",
"step 157/157 - loss: 1.4612 - acc_top1: 0.9
777 - acc_top2: 0.9941
- 6ms/step\n",
"Eval samples: 10000\n"
]
},
{
"data": {
"text/plain": [
"{'loss': [1.461150
6], 'acc_top1': 0.9803, 'acc_top2': 0.9955
}"
"{'loss': [1.461150
4], 'acc_top1': 0.9777, 'acc_top2': 0.9941
}"
]
},
"execution_count":
12
,
"execution_count":
23
,
"metadata": {},
"output_type": "execute_result"
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录