diff --git a/01.fit_a_line/README.en.md b/01.fit_a_line/README.en.md index b7d60ec64a45c9e8e4781416aef4fb55512c3318..31341db5e1b725ba6c646597537ef54f7bb14f9d 100644 --- a/01.fit_a_line/README.en.md +++ b/01.fit_a_line/README.en.md @@ -1,7 +1,7 @@ # Linear Regression Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example. -The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md). +The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book). ## Problem Setup Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity. diff --git a/01.fit_a_line/README.md b/01.fit_a_line/README.md index 5e7f6ee1d4f363857b66a0663f0570ca2df180c2..45950078e1c09d77d9e52c9b9160e3c3458557fc 100644 --- a/01.fit_a_line/README.md +++ b/01.fit_a_line/README.md @@ -1,7 +1,7 @@ # 线性回归 让我们从经典的线性回归(Linear Regression \[[1](#参考文献)\])模型开始这份教程。在这一章里,你将使用真实的数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念。 -本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md)。 +本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md#运行这本书)。 ## 背景介绍 给定一个大小为$n$的数据集 ${\{y_{i}, x_{i1}, ..., x_{id}\}}_{i=1}^{n}$,其中$x_{i1}, \ldots, x_{id}$是第$i$个样本$d$个属性上的取值,$y_i$是该样本待预测的目标。线性回归模型假设目标$y_i$可以被属性间的线性组合描述,即 diff --git a/01.fit_a_line/index.en.html b/01.fit_a_line/index.en.html index 954f90ceb0c02fe749016fef97a8305a91bbb54b..fdb8c89cfad99aefea1727c89f414fc2b3ee4beb 100644 --- a/01.fit_a_line/index.en.html +++ b/01.fit_a_line/index.en.html @@ -43,7 +43,7 @@ # Linear Regression Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example. -The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md). +The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book). ## Problem Setup Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity. diff --git a/01.fit_a_line/index.html b/01.fit_a_line/index.html index 0046775767192ec67bda87b9e54103d2a24a60b8..cac6ce753a502d47aec931845eb014df4876d521 100644 --- a/01.fit_a_line/index.html +++ b/01.fit_a_line/index.html @@ -43,7 +43,7 @@ # 线性回归 让我们从经典的线性回归(Linear Regression \[[1](#参考文献)\])模型开始这份教程。在这一章里,你将使用真实的数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念。 -本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md)。 +本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md#运行这本书)。 ## 背景介绍 给定一个大小为$n$的数据集 ${\{y_{i}, x_{i1}, ..., x_{id}\}}_{i=1}^{n}$,其中$x_{i1}, \ldots, x_{id}$是第$i$个样本$d$个属性上的取值,$y_i$是该样本待预测的目标。线性回归模型假设目标$y_i$可以被属性间的线性组合描述,即 diff --git a/02.recognize_digits/README.en.md b/02.recognize_digits/README.en.md index 894d4faea990a4fca21b003395c3125825eb8838..dde36a0d1b497a349d6772cf0c6472bae229b8a6 100644 --- a/02.recognize_digits/README.en.md +++ b/02.recognize_digits/README.en.md @@ -1,6 +1,6 @@ # Recognize Digits -The source code for this tutorial is live at [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits). For instructions on getting started with Paddle, please refer to [installation instructions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst). +The source code for this tutorial is live at [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits). For instructions on getting started with Paddle, please refer to [installation instructions](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book). ## Introduction When one learns to program, the first task is usually to write a program that prints "Hello World!". In Machine Learning or Deep Learning, the equivalent task is to train a model to recognize hand-written digits on the dataset [MNIST](http://yann.lecun.com/exdb/mnist/). Handwriting recognition is a classic image classification problem. The problem is relatively easy and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1). The input image is a $28\times28$ matrix, and the label is one of the digits from $0$ to $9$. All images are normalized, meaning that they are both rescaled and centered. diff --git a/02.recognize_digits/README.md b/02.recognize_digits/README.md index edb80727a21260778d295f05812e38fbb12b5172..17773c0495d39ebf6ccc272161527f4b9407123e 100644 --- a/02.recognize_digits/README.md +++ b/02.recognize_digits/README.md @@ -1,6 +1,6 @@ # 识别数字 -本教程源代码目录在[book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。 +本教程源代码目录在[book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md#运行这本书)。 ## 背景介绍 当我们学习编程的时候,编写的第一个程序一般是实现打印"Hello World"。而机器学习(或深度学习)的入门教程,一般都是 [MNIST](http://yann.lecun.com/exdb/mnist/) 数据库上的手写识别问题。原因是手写识别属于典型的图像分类问题,比较简单,同时MNIST数据集也很完备。MNIST数据集作为一个简单的计算机视觉数据集,包含一系列如图1所示的手写数字图片和对应的标签。图片是28x28的像素矩阵,标签则对应着0~9的10个数字。每张图片都经过了大小归一化和居中处理。 diff --git a/02.recognize_digits/index.en.html b/02.recognize_digits/index.en.html index 53895ea940de36d6ac87f428d6eac014384ae03e..7482f53df5b276929187ea39ed53a37d5cbf5c30 100644 --- a/02.recognize_digits/index.en.html +++ b/02.recognize_digits/index.en.html @@ -42,7 +42,7 @@