Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
2918c8cb
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2918c8cb
编写于
3月 20, 2017
作者:
T
Tao Luo
提交者:
GitHub
3月 20, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #225 from luotao1/rename
reorganize the catalog
上级
df2ba16e
08bbc31d
变更
30
展开全部
显示空白变更内容
内联
并排
Showing
30 changed file
with
2 addition
and
1187 deletion
+2
-1187
.pre-commit-config.yaml
.pre-commit-config.yaml
+1
-1
.pre-commit-hooks/convert_markdown_into_html.py
.pre-commit-hooks/convert_markdown_into_html.py
+0
-0
.pre-commit-hooks/convert_markdown_into_ipynb.sh
.pre-commit-hooks/convert_markdown_into_ipynb.sh
+0
-0
.tools/convert-markdown-into-ipynb-and-test.sh
.tools/convert-markdown-into-ipynb-and-test.sh
+0
-0
.travis.yml
.travis.yml
+1
-1
.travis/precommit.sh
.travis/precommit.sh
+0
-0
image_classification/deprecated/README.md
image_classification/deprecated/README.md
+0
-545
image_classification/deprecated/classify.py
image_classification/deprecated/classify.py
+0
-243
image_classification/deprecated/data/cifar10.py
image_classification/deprecated/data/cifar10.py
+0
-60
image_classification/deprecated/data/get_data.sh
image_classification/deprecated/data/get_data.sh
+0
-20
image_classification/deprecated/dataprovider.py
image_classification/deprecated/dataprovider.py
+0
-45
image_classification/deprecated/extract.sh
image_classification/deprecated/extract.sh
+0
-17
image_classification/deprecated/models/resnet.py
image_classification/deprecated/models/resnet.py
+0
-135
image_classification/deprecated/models/vgg.py
image_classification/deprecated/models/vgg.py
+0
-74
image_classification/deprecated/predict.sh
image_classification/deprecated/predict.sh
+0
-17
image_classification/deprecated/train.sh
image_classification/deprecated/train.sh
+0
-29
pending/gan/README.md
pending/gan/README.md
+0
-0
pending/gan/index.html
pending/gan/index.html
+0
-0
pending/image_caption/README.md
pending/image_caption/README.md
+0
-0
pending/image_caption/index.html
pending/image_caption/index.html
+0
-0
pending/image_detection/README.md
pending/image_detection/README.md
+0
-0
pending/image_detection/index.html
pending/image_detection/index.html
+0
-0
pending/image_qa/README.md
pending/image_qa/README.md
+0
-0
pending/image_qa/index.html
pending/image_qa/index.html
+0
-0
pending/query_relationship/README.md
pending/query_relationship/README.md
+0
-0
pending/query_relationship/index.html
pending/query_relationship/index.html
+0
-0
pending/skip_thought/README.md
pending/skip_thought/README.md
+0
-0
pending/skip_thought/index.html
pending/skip_thought/index.html
+0
-0
pending/speech_recognition/README.md
pending/speech_recognition/README.md
+0
-0
pending/speech_recognition/index.html
pending/speech_recognition/index.html
+0
-0
未找到文件。
.pre-commit-config.yaml
浏览文件 @
2918c8cb
...
...
@@ -34,7 +34,7 @@
-
id
:
convert-markdown-into-html
name
:
convert-markdown-into-html
description
:
Convert README.md into index.html and README.en.md into index.en.html
entry
:
python pre-commit-hooks/convert_markdown_into_html.py
entry
:
python
.
pre-commit-hooks/convert_markdown_into_html.py
language
:
system
files
:
.+README(\.en)?\.md$
pre-commit-hooks/convert_markdown_into_html.py
→
.
pre-commit-hooks/convert_markdown_into_html.py
浏览文件 @
2918c8cb
文件已移动
pre-commit-hooks/convert_markdown_into_ipynb.sh
→
.
pre-commit-hooks/convert_markdown_into_ipynb.sh
浏览文件 @
2918c8cb
文件已移动
tools/convert-markdown-into-ipynb-and-test.sh
→
.
tools/convert-markdown-into-ipynb-and-test.sh
浏览文件 @
2918c8cb
文件已移动
.travis.yml
浏览文件 @
2918c8cb
...
...
@@ -19,7 +19,7 @@ before_install:
-
pip install -U virtualenv pre-commit pip
-
GOPATH=/tmp/go go get -u github.com/wangkuiyi/ipynb/markdown-to-ipynb
script
:
-
PATH=/tmp/go/bin:$PATH travis/precommit.sh
-
PATH=/tmp/go/bin:$PATH
.
travis/precommit.sh
notifications
:
email
:
on_success
:
change
...
...
travis/precommit.sh
→
.
travis/precommit.sh
浏览文件 @
2918c8cb
文件已移动
image_classification/deprecated/README.md
已删除
100644 → 0
浏览文件 @
df2ba16e
此差异已折叠。
点击以展开。
image_classification/deprecated/classify.py
已删除
100644 → 0
浏览文件 @
df2ba16e
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
,
sys
import
cPickle
import
numpy
as
np
from
PIL
import
Image
from
optparse
import
OptionParser
import
paddle.utils.image_util
as
image_util
from
py_paddle
import
swig_paddle
,
DataProviderConverter
from
paddle.trainer.PyDataProvider2
import
dense_vector
from
paddle.trainer.config_parser
import
parse_config
import
logging
logging
.
basicConfig
(
format
=
'[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s'
)
logging
.
getLogger
().
setLevel
(
logging
.
INFO
)
def
vis_square
(
data
,
fname
):
import
matplotlib
matplotlib
.
use
(
'Agg'
)
import
matplotlib.pyplot
as
plt
"""Take an array of shape (n, height, width) or (n, height, width, 3)
and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)"""
# normalize data for display
data
=
(
data
-
data
.
min
())
/
(
data
.
max
()
-
data
.
min
())
# force the number of filters to be square
n
=
int
(
np
.
ceil
(
np
.
sqrt
(
data
.
shape
[
0
])))
padding
=
(
((
0
,
n
**
2
-
data
.
shape
[
0
]),
(
0
,
1
),
(
0
,
1
))
# add some space between filters
+
((
0
,
0
),
)
*
(
data
.
ndim
-
3
))
# don't pad the last dimension (if there is one)
data
=
np
.
pad
(
data
,
padding
,
mode
=
'constant'
,
constant_values
=
1
)
# pad with ones (white)
# tile the filters into an image
data
=
data
.
reshape
((
n
,
n
)
+
data
.
shape
[
1
:]).
transpose
((
0
,
2
,
1
,
3
)
+
tuple
(
range
(
4
,
data
.
ndim
+
1
)))
data
=
data
.
reshape
((
n
*
data
.
shape
[
1
],
n
*
data
.
shape
[
3
])
+
data
.
shape
[
4
:])
plt
.
imshow
(
data
,
cmap
=
'gray'
)
plt
.
savefig
(
fname
)
plt
.
axis
(
'off'
)
class
ImageClassifier
():
def
__init__
(
self
,
train_conf
,
resize_dim
,
crop_dim
,
model_dir
=
None
,
use_gpu
=
True
,
mean_file
=
None
,
oversample
=
False
,
is_color
=
True
):
self
.
train_conf
=
train_conf
self
.
model_dir
=
model_dir
if
model_dir
is
None
:
self
.
model_dir
=
os
.
path
.
dirname
(
train_conf
)
self
.
resize_dim
=
resize_dim
self
.
crop_dims
=
[
crop_dim
,
crop_dim
]
self
.
oversample
=
oversample
self
.
is_color
=
is_color
self
.
transformer
=
image_util
.
ImageTransformer
(
is_color
=
is_color
)
self
.
transformer
.
set_transpose
((
2
,
0
,
1
))
self
.
transformer
.
set_channel_swap
((
2
,
1
,
0
))
self
.
mean_file
=
mean_file
if
self
.
mean_file
is
not
None
:
mean
=
np
.
load
(
self
.
mean_file
)[
'mean'
]
mean
=
mean
.
reshape
(
3
,
self
.
crop_dims
[
0
],
self
.
crop_dims
[
1
])
self
.
transformer
.
set_mean
(
mean
)
# mean pixel
else
:
# if you use three mean value, set like:
# this three mean value is calculated from ImageNet.
self
.
transformer
.
set_mean
(
np
.
array
([
103.939
,
116.779
,
123.68
]))
conf_args
=
"use_gpu=%d,is_predict=1"
%
(
int
(
use_gpu
))
conf
=
parse_config
(
train_conf
,
conf_args
)
swig_paddle
.
initPaddle
(
"--use_gpu=%d"
%
(
int
(
use_gpu
)))
self
.
network
=
swig_paddle
.
GradientMachine
.
createFromConfigProto
(
conf
.
model_config
)
assert
isinstance
(
self
.
network
,
swig_paddle
.
GradientMachine
)
self
.
network
.
loadParameters
(
self
.
model_dir
)
dim
=
3
*
self
.
crop_dims
[
0
]
*
self
.
crop_dims
[
1
]
slots
=
[
dense_vector
(
dim
)]
self
.
converter
=
DataProviderConverter
(
slots
)
def
get_data
(
self
,
img_path
):
"""
1. load image from img_path.
2. resize or oversampling.
3. transformer data: transpose, channel swap, sub mean.
return K x H x W ndarray.
img_path: image path.
"""
image
=
image_util
.
load_image
(
img_path
,
self
.
is_color
)
# Another way to extract oversampled features is that
# cropping and averaging from large feature map which is
# calculated by large size of image.
# This way reduces the computation.
if
self
.
oversample
:
image
=
image_util
.
resize_image
(
image
,
self
.
resize_dim
)
image
=
np
.
array
(
image
)
input
=
np
.
zeros
(
(
1
,
image
.
shape
[
0
],
image
.
shape
[
1
],
3
),
dtype
=
np
.
float32
)
input
[
0
]
=
image
.
astype
(
np
.
float32
)
input
=
image_util
.
oversample
(
input
,
self
.
crop_dims
)
else
:
image
=
image
.
resize
(
self
.
crop_dims
,
Image
.
ANTIALIAS
)
input
=
np
.
zeros
(
(
1
,
self
.
crop_dims
[
0
],
self
.
crop_dims
[
1
],
3
),
dtype
=
np
.
float32
)
input
[
0
]
=
np
.
array
(
image
).
astype
(
np
.
float32
)
data_in
=
[]
for
img
in
input
:
img
=
self
.
transformer
.
transformer
(
img
).
flatten
()
data_in
.
append
([
img
.
tolist
()])
return
data_in
def
forward
(
self
,
input_data
):
in_arg
=
self
.
converter
(
input_data
)
return
self
.
network
.
forwardTest
(
in_arg
)
def
forward
(
self
,
data
,
output_layer
):
input
=
self
.
converter
(
data
)
self
.
network
.
forwardTest
(
input
)
output
=
self
.
network
.
getLayerOutputs
(
output_layer
)
res
=
{}
if
isinstance
(
output_layer
,
basestring
):
output_layer
=
[
output_layer
]
for
name
in
output_layer
:
# For oversampling, average predictions across crops.
# If not, the shape of output[name]: (1, class_number),
# the mean is also applicable.
res
[
name
]
=
output
[
name
].
mean
(
0
)
return
res
def
option_parser
():
usage
=
"%prog -c config -i data_list -w model_dir [options]"
parser
=
OptionParser
(
usage
=
"usage: %s"
%
usage
)
parser
.
add_option
(
"--job"
,
action
=
"store"
,
dest
=
"job_type"
,
choices
=
[
'predict'
,
'extract'
,
],
default
=
'predict'
,
help
=
"The job type.
\
predict: predicting,
\
extract: extract features"
)
parser
.
add_option
(
"--conf"
,
action
=
"store"
,
dest
=
"train_conf"
,
default
=
'models/vgg.py'
,
help
=
"network config"
)
parser
.
add_option
(
"--data"
,
action
=
"store"
,
dest
=
"data_file"
,
default
=
'image/dog.png'
,
help
=
"image list"
)
parser
.
add_option
(
"--model"
,
action
=
"store"
,
dest
=
"model_path"
,
default
=
None
,
help
=
"model path"
)
parser
.
add_option
(
"-c"
,
dest
=
"cpu_gpu"
,
action
=
"store_false"
,
help
=
"Use cpu mode."
)
parser
.
add_option
(
"-g"
,
dest
=
"cpu_gpu"
,
default
=
True
,
action
=
"store_true"
,
help
=
"Use gpu mode."
)
parser
.
add_option
(
"--mean"
,
action
=
"store"
,
dest
=
"mean"
,
default
=
'data/mean.meta'
,
help
=
"The mean file."
)
parser
.
add_option
(
"--multi_crop"
,
action
=
"store_true"
,
dest
=
"multi_crop"
,
default
=
False
,
help
=
"Wether to use multiple crops on image."
)
return
parser
.
parse_args
()
def
main
():
options
,
args
=
option_parser
()
mean
=
'data/mean.meta'
if
not
options
.
mean
else
options
.
mean
conf
=
'models/vgg.py'
if
not
options
.
train_conf
else
options
.
train_conf
obj
=
ImageClassifier
(
conf
,
32
,
32
,
options
.
model_path
,
use_gpu
=
options
.
cpu_gpu
,
mean_file
=
mean
,
oversample
=
options
.
multi_crop
)
image_path
=
options
.
data_file
if
options
.
job_type
==
'predict'
:
output_layer
=
'__fc_layer_2__'
data
=
obj
.
get_data
(
image_path
)
prob
=
obj
.
forward
(
data
,
output_layer
)
lab
=
np
.
argsort
(
-
prob
[
output_layer
])
logging
.
info
(
"Label of %s is: %d"
,
image_path
,
lab
[
0
])
elif
options
.
job_type
==
"extract"
:
output_layer
=
'__conv_0__'
data
=
obj
.
get_data
(
options
.
data_file
)
features
=
obj
.
forward
(
data
,
output_layer
)
dshape
=
(
64
,
32
,
32
)
fea
=
features
[
output_layer
].
reshape
(
dshape
)
vis_square
(
fea
,
'fea_conv0.png'
)
if
__name__
==
'__main__'
:
main
()
image_classification/deprecated/data/cifar10.py
已删除
100755 → 0
浏览文件 @
df2ba16e
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
numpy
as
np
import
cPickle
DATA
=
"cifar-10-batches-py"
CHANNEL
=
3
HEIGHT
=
32
WIDTH
=
32
def
create_mean
(
dataset
):
if
not
os
.
path
.
isfile
(
"mean.meta"
):
mean
=
np
.
zeros
(
CHANNEL
*
HEIGHT
*
WIDTH
)
num
=
0
for
f
in
dataset
:
batch
=
np
.
load
(
f
)
mean
+=
batch
[
'data'
].
sum
(
0
)
num
+=
len
(
batch
[
'data'
])
mean
/=
num
print
mean
.
size
data
=
{
"mean"
:
mean
,
"size"
:
mean
.
size
}
cPickle
.
dump
(
data
,
open
(
"mean.meta"
,
'w'
),
protocol
=
cPickle
.
HIGHEST_PROTOCOL
)
def
create_data
():
train_set
=
[
DATA
+
"/data_batch_%d"
%
(
i
+
1
)
for
i
in
xrange
(
0
,
5
)]
test_set
=
[
DATA
+
"/test_batch"
]
# create mean values
create_mean
(
train_set
)
# create dataset lists
if
not
os
.
path
.
isfile
(
"train.txt"
):
train
=
[
"data/"
+
i
for
i
in
train_set
]
open
(
"train.txt"
,
"w"
).
write
(
"
\n
"
.
join
(
train
))
open
(
"train.list"
,
"w"
).
write
(
"
\n
"
.
join
([
"data/train.txt"
]))
if
not
os
.
path
.
isfile
(
"text.txt"
):
test
=
[
"data/"
+
i
for
i
in
test_set
]
open
(
"test.txt"
,
"w"
).
write
(
"
\n
"
.
join
(
test
))
open
(
"test.list"
,
"w"
).
write
(
"
\n
"
.
join
([
"data/test.txt"
]))
if
__name__
==
'__main__'
:
create_data
()
image_classification/deprecated/data/get_data.sh
已删除
100755 → 0
浏览文件 @
df2ba16e
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
tar
zxf cifar-10-python.tar.gz
rm
cifar-10-python.tar.gz
python cifar10.py
image_classification/deprecated/dataprovider.py
已删除
100644 → 0
浏览文件 @
df2ba16e
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
cPickle
from
paddle.trainer.PyDataProvider2
import
*
def
initializer
(
settings
,
mean_path
,
is_train
,
**
kwargs
):
settings
.
is_train
=
is_train
settings
.
input_size
=
3
*
32
*
32
settings
.
mean
=
np
.
load
(
mean_path
)[
'mean'
]
settings
.
input_types
=
{
'image'
:
dense_vector
(
settings
.
input_size
),
'label'
:
integer_value
(
10
)
}
@
provider
(
init_hook
=
initializer
,
pool_size
=
50000
)
def
process
(
settings
,
file_list
):
with
open
(
file_list
,
'r'
)
as
fdata
:
for
fname
in
fdata
:
fo
=
open
(
fname
.
strip
(),
'rb'
)
batch
=
cPickle
.
load
(
fo
)
fo
.
close
()
images
=
batch
[
'data'
]
labels
=
batch
[
'labels'
]
for
im
,
lab
in
zip
(
images
,
labels
):
if
settings
.
is_train
and
np
.
random
.
randint
(
2
):
im
=
im
.
reshape
(
3
,
32
,
32
)
im
=
im
[:,
:,
::
-
1
]
im
=
im
.
flatten
()
im
=
im
-
settings
.
mean
yield
{
'image'
:
im
.
astype
(
'float32'
),
'label'
:
int
(
lab
)}
image_classification/deprecated/extract.sh
已删除
100755 → 0
浏览文件 @
df2ba16e
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
python classify.py
--job
=
extract
--model
=
output/pass-00299
--data
=
image/dog.png
# -c
image_classification/deprecated/models/resnet.py
已删除
100644 → 0
浏览文件 @
df2ba16e
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers
import
*
is_predict
=
get_config_arg
(
"is_predict"
,
bool
,
False
)
if
not
is_predict
:
args
=
{
'meta'
:
'data/mean.meta'
}
define_py_data_sources2
(
train_list
=
'data/train.list'
,
test_list
=
'data/test.list'
,
module
=
'dataprovider'
,
obj
=
'process'
,
args
=
{
'mean_path'
:
'data/mean.meta'
})
settings
(
batch_size
=
128
,
learning_rate
=
0.1
/
128.0
,
learning_rate_decay_a
=
0.1
,
learning_rate_decay_b
=
50000
*
140
,
learning_rate_schedule
=
'discexp'
,
learning_method
=
MomentumOptimizer
(
0.9
),
regularization
=
L2Regularization
(
0.0002
*
128
))
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
active_type
=
ReluActivation
(),
ch_in
=
None
):
tmp
=
img_conv_layer
(
input
=
input
,
filter_size
=
filter_size
,
num_channels
=
ch_in
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
LinearActivation
(),
bias_attr
=
False
)
return
batch_norm_layer
(
input
=
tmp
,
act
=
active_type
)
def
shortcut
(
ipt
,
n_in
,
n_out
,
stride
):
if
n_in
!=
n_out
:
print
(
"n_in != n_out"
)
return
conv_bn_layer
(
ipt
,
n_out
,
1
,
stride
,
0
,
LinearActivation
())
else
:
return
ipt
def
basicblock
(
ipt
,
ch_out
,
stride
):
ch_in
=
ipt
.
num_filters
tmp
=
conv_bn_layer
(
ipt
,
ch_out
,
3
,
stride
,
1
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
,
LinearActivation
())
short
=
shortcut
(
ipt
,
ch_in
,
ch_out
,
stride
)
return
addto_layer
(
input
=
[
tmp
,
short
],
act
=
ReluActivation
())
def
bottleneck
(
ipt
,
ch_out
,
stride
):
ch_in
=
ipt
.
num_filter
tmp
=
conv_bn_layer
(
ipt
,
ch_out
,
1
,
stride
,
0
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
*
4
,
1
,
1
,
0
,
LinearActivation
())
short
=
shortcut
(
ipt
,
ch_in
,
ch_out
*
4
,
stride
)
return
addto_layer
(
input
=
[
tmp
,
short
],
act
=
ReluActivation
())
def
layer_warp
(
block_func
,
ipt
,
features
,
count
,
stride
):
tmp
=
block_func
(
ipt
,
features
,
stride
)
for
i
in
range
(
1
,
count
):
tmp
=
block_func
(
tmp
,
features
,
1
)
return
tmp
def
resnet_imagenet
(
ipt
,
depth
=
50
):
cfg
=
{
18
:
([
2
,
2
,
2
,
1
],
basicblock
),
34
:
([
3
,
4
,
6
,
3
],
basicblock
),
50
:
([
3
,
4
,
6
,
3
],
bottleneck
),
101
:
([
3
,
4
,
23
,
3
],
bottleneck
),
152
:
([
3
,
8
,
36
,
3
],
bottleneck
)
}
stages
,
block_func
=
cfg
[
depth
]
tmp
=
conv_bn_layer
(
ipt
,
ch_in
=
3
,
ch_out
=
64
,
filter_size
=
7
,
stride
=
2
,
padding
=
3
)
tmp
=
img_pool_layer
(
input
=
tmp
,
pool_size
=
3
,
stride
=
2
)
tmp
=
layer_warp
(
block_func
,
tmp
,
64
,
stages
[
0
],
1
)
tmp
=
layer_warp
(
block_func
,
tmp
,
128
,
stages
[
1
],
2
)
tmp
=
layer_warp
(
block_func
,
tmp
,
256
,
stages
[
2
],
2
)
tmp
=
layer_warp
(
block_func
,
tmp
,
512
,
stages
[
3
],
2
)
tmp
=
img_pool_layer
(
input
=
tmp
,
pool_size
=
7
,
stride
=
1
,
pool_type
=
AvgPooling
())
tmp
=
fc_layer
(
input
=
tmp
,
size
=
1000
,
act
=
SoftmaxActivation
())
return
tmp
def
resnet_cifar10
(
ipt
,
depth
=
32
):
#depth should be one of 20, 32, 44, 56, 110, 1202
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
/
6
nStages
=
{
16
,
64
,
128
}
conv1
=
conv_bn_layer
(
ipt
,
ch_in
=
3
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
64
,
n
,
2
)
pool
=
img_pool_layer
(
input
=
res3
,
pool_size
=
8
,
stride
=
1
,
pool_type
=
AvgPooling
())
return
pool
datadim
=
3
*
32
*
32
classdim
=
10
data
=
data_layer
(
name
=
'image'
,
size
=
datadim
)
net
=
resnet_cifar10
(
data
,
depth
=
32
)
out
=
fc_layer
(
input
=
net
,
size
=
10
,
act
=
SoftmaxActivation
())
if
not
is_predict
:
lbl
=
data_layer
(
name
=
"label"
,
size
=
classdim
)
outputs
(
classification_cost
(
input
=
out
,
label
=
lbl
))
else
:
outputs
(
out
)
image_classification/deprecated/models/vgg.py
已删除
100644 → 0
浏览文件 @
df2ba16e
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers
import
*
is_predict
=
get_config_arg
(
"is_predict"
,
bool
,
False
)
if
not
is_predict
:
define_py_data_sources2
(
train_list
=
'data/train.list'
,
test_list
=
'data/test.list'
,
module
=
'dataprovider'
,
obj
=
'process'
,
args
=
{
'mean_path'
:
'data/mean.meta'
})
settings
(
batch_size
=
128
,
learning_rate
=
0.1
/
128.0
,
learning_rate_decay_a
=
0.1
,
learning_rate_decay_b
=
50000
*
100
,
learning_rate_schedule
=
'discexp'
,
learning_method
=
MomentumOptimizer
(
0.9
),
regularization
=
L2Regularization
(
0.0005
*
128
),
)
def
vgg_bn_drop
(
input
):
def
conv_block
(
ipt
,
num_filter
,
groups
,
dropouts
,
num_channels
=
None
):
return
img_conv_group
(
input
=
ipt
,
num_channels
=
num_channels
,
pool_size
=
2
,
pool_stride
=
2
,
conv_num_filter
=
[
num_filter
]
*
groups
,
conv_filter_size
=
3
,
conv_act
=
ReluActivation
(),
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
MaxPooling
())
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
],
3
)
conv2
=
conv_block
(
conv1
,
128
,
2
,
[
0.4
,
0
])
conv3
=
conv_block
(
conv2
,
256
,
3
,
[
0.4
,
0.4
,
0
])
conv4
=
conv_block
(
conv3
,
512
,
3
,
[
0.4
,
0.4
,
0
])
conv5
=
conv_block
(
conv4
,
512
,
3
,
[
0.4
,
0.4
,
0
])
drop
=
dropout_layer
(
input
=
conv5
,
dropout_rate
=
0.5
)
fc1
=
fc_layer
(
input
=
drop
,
size
=
512
,
act
=
LinearActivation
())
bn
=
batch_norm_layer
(
input
=
fc1
,
act
=
ReluActivation
(),
layer_attr
=
ExtraAttr
(
drop_rate
=
0.5
))
fc2
=
fc_layer
(
input
=
bn
,
size
=
512
,
act
=
LinearActivation
())
return
fc2
datadim
=
3
*
32
*
32
classdim
=
10
data
=
data_layer
(
name
=
'image'
,
size
=
datadim
)
net
=
vgg_bn_drop
(
data
)
out
=
fc_layer
(
input
=
net
,
size
=
classdim
,
act
=
SoftmaxActivation
())
if
not
is_predict
:
lbl
=
data_layer
(
name
=
"label"
,
size
=
classdim
)
cost
=
classification_cost
(
input
=
out
,
label
=
lbl
)
outputs
(
cost
)
else
:
outputs
(
out
)
image_classification/deprecated/predict.sh
已删除
100755 → 0
浏览文件 @
df2ba16e
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
python classify.py
--job
=
predict
--model
=
output/pass-00299
--data
=
image/dog.png
# -c
image_classification/deprecated/train.sh
已删除
100755 → 0
浏览文件 @
df2ba16e
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
#cfg=models/resnet.py
cfg
=
models/vgg.py
output
=
output
log
=
train.log
paddle train
\
--config
=
$cfg
\
--use_gpu
=
true
\
--trainer_count
=
1
\
--log_period
=
100
\
--num_passes
=
300
\
--save_dir
=
$output
\
2>&1 |
tee
$log
gan/README.md
→
pending/
gan/README.md
浏览文件 @
2918c8cb
文件已移动
gan/index.html
→
pending/
gan/index.html
浏览文件 @
2918c8cb
文件已移动
image_caption/README.md
→
pending/
image_caption/README.md
浏览文件 @
2918c8cb
文件已移动
image_caption/index.html
→
pending/
image_caption/index.html
浏览文件 @
2918c8cb
文件已移动
image_detection/README.md
→
pending/
image_detection/README.md
浏览文件 @
2918c8cb
文件已移动
image_detection/index.html
→
pending/
image_detection/index.html
浏览文件 @
2918c8cb
文件已移动
image_qa/README.md
→
pending/
image_qa/README.md
浏览文件 @
2918c8cb
文件已移动
image_qa/index.html
→
pending/
image_qa/index.html
浏览文件 @
2918c8cb
文件已移动
query_relationship/README.md
→
pending/
query_relationship/README.md
浏览文件 @
2918c8cb
文件已移动
query_relationship/index.html
→
pending/
query_relationship/index.html
浏览文件 @
2918c8cb
文件已移动
skip_thought/README.md
→
pending/
skip_thought/README.md
浏览文件 @
2918c8cb
文件已移动
skip_thought/index.html
→
pending/
skip_thought/index.html
浏览文件 @
2918c8cb
文件已移动
speech_recognition/README.md
→
pending/
speech_recognition/README.md
浏览文件 @
2918c8cb
文件已移动
speech_recognition/index.html
→
pending/
speech_recognition/index.html
浏览文件 @
2918c8cb
文件已移动
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录