index.en.html 18.8 KB
Newer Older
1

Y
Yi Wang 已提交
2 3 4 5 6 7 8
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yi Wang 已提交
11 12 13 14 15 16
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
Y
Yu Yang 已提交
17
  <script type="text/javascript" src="../.tools/theme/marked.js">
Y
Yi Wang 已提交
18 19 20 21 22
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
Y
Yu Yang 已提交
23
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
Y
Yi Wang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37
</head>
<style type="text/css" >
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
}
</style>


<body>

Y
Yu Yang 已提交
38
<div id="context" class="container-fluid markdown-body">
Y
Yi Wang 已提交
39 40 41 42 43 44
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# Personalized Recommendation

45
The source code of this tutorial is in [book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/08.recommender_system).
Y
Yi Wang 已提交
46

47 48 49
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).


Y
Yi Wang 已提交
50 51
## Background

Y
Yi Wang 已提交
52
With the fast growth of e-commerce, online videos, and online reading business, users have to rely on recommender systems to avoid manually browsing tremendous volume of choices.  Recommender systems understand users' interest by mining user behavior and other properties of users and products.
Y
Yi Wang 已提交
53 54 55 56 57 58 59 60 61 62 63

Some well know approaches include:

- User behavior-based approach.  A well-known method is collaborative filtering. The underlying assumption is that if a person A has the same opinion as a person B on an issue, A is more likely to have B's opinion on a different issue than that of a randomly chosen person.

- Content-based recommendation[[1](#reference)]. This approach infers feature vectors that represent products from their descriptions.  It also infers feature vectors that represent users' interests.  Then it measures the relevance of users and products by some distances between these feature vectors.

- Hybrid approach[[2](#reference)]: This approach uses the content-based information to help address the cold start problem[[6](#reference)] in behavior-based approach.

Among these options, collaborative filtering might be the most studied one.  Some of its variants include user-based[[3](#reference)], item-based [[4](#reference)], social network based[[5](#reference)], and model-based.

Y
Yi Wang 已提交
64
This tutorial explains a deep learning based approach and how to implement it using PaddlePaddle.  We will train a model using a dataset that includes user information, movie information, and ratings.  Once we train the model, we will be able to get a predicted rating given a pair of user and movie IDs.
Y
Yi Wang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82


## Model Overview

To know more about deep learning based recommendation, let us start from going over the Youtube recommender system[[7](#参考文献)] before introducing our hybrid model.


### YouTube's Deep Learning Recommendation Model

YouTube is a video-sharing Web site with one of the largest user base in the world.  Its recommender system serves more than a billion users.  This system is composed of two major parts: candidate generation and ranking.  The former selects few hundreds of candidates from millions of videos, and the latter ranks and outputs the top 10.

<p align="center">
<img src="image/YouTube_Overview.en.png" width="70%" ><br/>
Figure 1. YouTube recommender system overview.
</p>

#### Candidate Generation Network

Y
Yi Wang 已提交
83
Youtube models candidate generation as a multiclass classification problem with a huge number of classes equal to the number of videos.  The architecture of the model is as follows:
Y
Yi Wang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

<p align="center">
<img src="image/Deep_candidate_generation_model_architecture.en.png" width="70%" ><br/>
Figure. Deep candidate geeration model.
</p>

The first stage of this model maps watching history and search queries into fixed-length representative features.  Then, an MLP (multi-layer perceptron, as described in the [Recognize Digits](https://github.com/PaddlePaddle/book/blob/develop/recognize_digits/README.md) tutorial) takes the concatenation of all representative vectors.  The output of the MLP represents the user' *intrinsic interests*.  At training time, it is used together with a softmax output layer for minimizing the classification error.   At serving time, it is used to compute the relevance of the user with all movies.

For a user $U$, the predicted watching probability of video $i$ is

$$P(\omega=i|u)=\frac{e^{v_{i}u}}{\sum_{j \in V}e^{v_{j}u}}$$

where $u$ is the representative vector of user $U$, $V$ is the corpus of all videos, $v_i$ is the representative vector of the $i$-th video. $u$ and $v_i$ are vectors of the same length, so we can compute their dot product using a fully connected layer.

This model could have a performance issue as the softmax output covers millions of classification labels.  To optimize performance, at the training time, the authors down-sample negative samples, so the actual number of classes is reduced to thousands.  At serving time, the authors ignore the normalization of the softmax outputs, because the results are just for ranking.


#### Ranking Network

The architecture of the ranking network is similar to that of the candidate generation network.  Similar to ranking models widely used in online advertising, it uses rich features like video ID, last watching time, etc.  The output layer of the ranking network is a weighted logistic regression, which rates all candidate videos.


### Hybrid Model

In the section, let us introduce our movie recommendation system.

In our network, the input includes features of users and movies.  The user feature includes four properties: user ID, gender, occupation, and age.  Movie features include their IDs, genres, and titles.

We use fully-connected layers to map user features into representative feature vectors and concatenate them.  The process of movie features is similar, except that for movie titles -- we feed titles into a text convolution network as described in the [sentiment analysis tutorial](https://github.com/PaddlePaddle/book/blob/develop/understand_sentiment/README.md))to get a fixed-length representative feature vector.

Given the feature vectors of users and movies, we compute the relevance using cosine similarity.  We minimize the squared error at training time.

<p align="center">

L
Luo Tao 已提交
118
<img src="image/rec_regression_network_en.png" width="90%" ><br/>
Y
Yi Wang 已提交
119
Figure 3. A hybrid recommendation model.
120
</p>
Y
Yi Wang 已提交
121 122 123

## Dataset

H
Helin Wang 已提交
124 125 126 127 128 129 130 131
We use the [MovieLens ml-1m](http://files.grouplens.org/datasets/movielens/ml-1m.zip) to train our model.  This dataset includes 10,000 ratings of 4,000 movies from 6,000 users to 4,000 movies.  Each rate is in the range of 1~5.  Thanks to GroupLens Research for collecting, processing and publishing the dataset.

`paddle.v2.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens` and `wmt14`, etc. There's no need for us to manually download and preprocess `MovieLens` dataset.

The raw `MoiveLens` contains movie ratings, relevant features from both movies and users.
For instance, one movie's feature could be:

```python
L
liaogang 已提交
132
import paddle.v2 as paddle
H
Helin Wang 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0]
```

```text
<MovieInfo id(1), title(Toy Story), categories(['Animation', "Children's", 'Comedy'])>
```

One user's feature could be:

```python
user_info = paddle.dataset.movielens.user_info()
print user_info.values()[0]
```

```text
<UserInfo id(1), gender(F), age(1), job(10)>
```

In this dateset, the distribution of age is shown as follows:

```text
1: "Under 18"
18: "18-24"
25: "25-34"
35: "35-44"
45: "45-49"
50: "50-55"
56: "56+"
```

User's occupation is selected from the following options:

```text
0: "other" or not specified
1: "academic/educator"
2: "artist"
3: "clerical/admin"
4: "college/grad student"
5: "customer service"
6: "doctor/health care"
7: "executive/managerial"
8: "farmer"
9: "homemaker"
10: "K-12 student"
11: "lawyer"
12: "programmer"
13: "retired"
14: "sales/marketing"
15: "scientist"
16: "self-employed"
17: "technician/engineer"
18: "tradesman/craftsman"
19: "unemployed"
20: "writer"
```

Each record consists of three main components: user features, movie features and movie ratings.
Likewise, as a simple example, consider the following:

```python
train_set_creator = paddle.dataset.movielens.train()
train_sample = next(train_set_creator())
uid = train_sample[0]
mov_id = train_sample[len(user_info[uid].value())]
print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1])
```

```text
User <UserInfo id(1), gender(F), age(1), job(10)> rates Movie <MovieInfo id(1193), title(One Flew Over the Cuckoo's Nest), categories(['Drama'])> with Score [5.0]
```

The output shows that user 1 gave movie `1193` a rating of 5.

After issuing a command `python train.py`, training will start immediately. The details will be unpacked by the following sessions to see how it works.

## Model Architecture

### Initialize PaddlePaddle

First, we must import and initialize PaddlePaddle (enable/disable GPU, set the number of trainers, etc).

```python
%matplotlib inline

import matplotlib.pyplot as plt
from IPython import display
import cPickle

import paddle.v2 as paddle
paddle.init(use_gpu=False)
```

### Model Configuration

```python
uid = paddle.layer.data(
L
livc 已提交
230 231 232
    name='user_id',
    type=paddle.data_type.integer_value(
        paddle.dataset.movielens.max_user_id() + 1))
H
Helin Wang 已提交
233
usr_emb = paddle.layer.embedding(input=uid, size=32)
L
livc 已提交
234
usr_fc = paddle.layer.fc(input=usr_emb, size=32)
H
Helin Wang 已提交
235 236

usr_gender_id = paddle.layer.data(
L
livc 已提交
237
    name='gender_id', type=paddle.data_type.integer_value(2))
H
Helin Wang 已提交
238
usr_gender_emb = paddle.layer.embedding(input=usr_gender_id, size=16)
L
livc 已提交
239
usr_gender_fc = paddle.layer.fc(input=usr_gender_emb, size=16)
H
Helin Wang 已提交
240 241

usr_age_id = paddle.layer.data(
L
livc 已提交
242 243 244
    name='age_id',
    type=paddle.data_type.integer_value(
        len(paddle.dataset.movielens.age_table)))
H
Helin Wang 已提交
245
usr_age_emb = paddle.layer.embedding(input=usr_age_id, size=16)
L
livc 已提交
246
usr_age_fc = paddle.layer.fc(input=usr_age_emb, size=16)
H
Helin Wang 已提交
247 248

usr_job_id = paddle.layer.data(
L
livc 已提交
249 250 251
    name='job_id',
    type=paddle.data_type.integer_value(
        paddle.dataset.movielens.max_job_id() + 1))
H
Helin Wang 已提交
252
usr_job_emb = paddle.layer.embedding(input=usr_job_id, size=16)
L
livc 已提交
253
usr_job_fc = paddle.layer.fc(input=usr_job_emb, size=16)
H
Helin Wang 已提交
254 255 256 257 258 259
```

As shown in the above code, the input is four dimension integers for each user, that is,  `user_id`,`gender_id`, `age_id` and `job_id`. In order to deal with these features conveniently, we use the language model in NLP to transform these discrete values into embedding vaules `usr_emb`, `usr_gender_emb`, `usr_age_emb` and `usr_job_emb`.

```python
usr_combined_features = paddle.layer.fc(
L
livc 已提交
260
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc],
H
Helin Wang 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274
        size=200,
        act=paddle.activation.Tanh())
```

Then, employing user features as input, directly connecting to a fully-connected layer, which is used to reduce dimension to 200.

Furthermore, we do a similar transformation for each movie feature. The model configuration is:

```python
mov_id = paddle.layer.data(
    name='movie_id',
    type=paddle.data_type.integer_value(
        paddle.dataset.movielens.max_movie_id() + 1))
mov_emb = paddle.layer.embedding(input=mov_id, size=32)
L
livc 已提交
275
mov_fc = paddle.layer.fc(input=mov_emb, size=32)
H
Helin Wang 已提交
276 277 278 279 280 281 282

mov_categories = paddle.layer.data(
    name='category_id',
    type=paddle.data_type.sparse_binary_vector(
        len(paddle.dataset.movielens.movie_categories())))
mov_categories_hidden = paddle.layer.fc(input=mov_categories, size=32)

L
livc 已提交
283
movie_title_dict = paddle.dataset.movielens.get_movie_title_dict()
H
Helin Wang 已提交
284 285 286 287 288 289
mov_title_id = paddle.layer.data(
    name='movie_title',
    type=paddle.data_type.integer_value_sequence(len(movie_title_dict)))
mov_title_emb = paddle.layer.embedding(input=mov_title_id, size=32)
mov_title_conv = paddle.networks.sequence_conv_pool(
    input=mov_title_emb, hidden_size=32, context_len=3)
Y
Yi Wang 已提交
290

H
Helin Wang 已提交
291
mov_combined_features = paddle.layer.fc(
L
livc 已提交
292
    input=[mov_fc, mov_categories_hidden, mov_title_conv],
H
Helin Wang 已提交
293 294 295
    size=200,
    act=paddle.activation.Tanh())
```
Y
Yi Wang 已提交
296

H
Helin Wang 已提交
297
Movie title, a sequence of words represented by an integer word index sequence, will be feed into a `sequence_conv_pool` layer, which will apply convolution and pooling on time dimension. Because pooling is done on time dimension, the output will be a fixed-length vector regardless the length of the input sequence.
Y
Yi Wang 已提交
298

H
Helin Wang 已提交
299
Finally, we can use cosine similarity to calculate the similarity between user characteristics and movie features.
Y
Yi Wang 已提交
300

H
Helin Wang 已提交
301 302
```python
inference = paddle.layer.cos_sim(a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
L
Luo Tao 已提交
303
cost = paddle.layer.mse_cost(
H
Helin Wang 已提交
304 305 306 307
        input=inference,
        label=paddle.layer.data(
        name='score', type=paddle.data_type.dense_vector(1)))
```
Y
Yi Wang 已提交
308

H
Helin Wang 已提交
309
## Model Training
Y
Yi Wang 已提交
310

H
Helin Wang 已提交
311
### Define Parameters
Y
Yi Wang 已提交
312

H
Helin Wang 已提交
313
First, we define the model parameters according to the previous model configuration `cost`.
Y
Yi Wang 已提交
314

H
Helin Wang 已提交
315 316 317 318
```python
# Create parameters
parameters = paddle.parameters.create(cost)
```
Y
Yi Wang 已提交
319

H
Helin Wang 已提交
320 321 322
### Create Trainer

Before jumping into creating a training module, algorithm setting is also necessary. Here we specified Adam optimization algorithm via `paddle.optimizer`.
Y
Yi Wang 已提交
323

H
Helin Wang 已提交
324 325 326 327 328 329 330
```python
trainer = paddle.trainer.SGD(cost=cost, parameters=parameters,
                             update_equation=paddle.optimizer.Adam(learning_rate=1e-4))
```

```text
[INFO 2017-03-06 17:12:13,378 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title, score]
L
Luo Tao 已提交
331
[INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__mse_cost_0__]
H
Helin Wang 已提交
332 333 334 335 336 337 338
```

### Training

`paddle.dataset.movielens.train` will yield records during each pass, after shuffling, a batch input is generated for training.

```python
H
Helin Wang 已提交
339
reader=paddle.batch(
H
Helin Wang 已提交
340
    paddle.reader.shuffle(
H
Helin Wang 已提交
341
        paddle.dataset.movielens.train(), buf_size=8192),
H
Helin Wang 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        batch_size=256)
```

`feeding` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `movielens.train` corresponds to `user_id` feature.

```python
feeding = {
    'user_id': 0,
    'gender_id': 1,
    'age_id': 2,
    'job_id': 3,
    'movie_id': 4,
    'category_id': 5,
    'movie_title': 6,
    'score': 7
}
```

Callback function `event_handler` will be called during training when a pre-defined event happens.

```python
step=0

train_costs=[],[]
test_costs=[],[]

def event_handler(event):
    global step
    global train_costs
    global test_costs
    if isinstance(event, paddle.event.EndIteration):
        need_plot = False
        if step % 10 == 0:  # every 10 batches, record a train cost
            train_costs[0].append(step)
            train_costs[1].append(event.cost)

        if step % 1000 == 0: # every 1000 batches, record a test cost
            result = trainer.test(reader=paddle.batch(
                  paddle.dataset.movielens.test(), batch_size=256))
            test_costs[0].append(step)
            test_costs[1].append(result.cost)

        if step % 100 == 0: # every 100 batches, update cost plot
            plt.plot(*train_costs)
            plt.plot(*test_costs)
            plt.legend(['Train Cost', 'Test Cost'], loc='upper left')
            display.clear_output(wait=True)
            display.display(plt.gcf())
            plt.gcf().clear()
        step += 1
```

Finally, we can invoke `trainer.train` to start training:

```python
trainer.train(
    reader=reader,
    event_handler=event_handler,
    feeding=feeding,
    num_passes=200)
```
Y
Yi Wang 已提交
403 404 405 406 407 408 409

## Conclusion

This tutorial goes over traditional approaches in recommender system and a deep learning based approach.  We also show that how to train and use the model with PaddlePaddle.  Deep learning has been well used in computer vision and NLP, we look forward to its new successes in recommender systems.

## Reference

H
Helin Wang 已提交
410 411
1. [Peter Brusilovsky](https://en.wikipedia.org/wiki/Peter_Brusilovsky) (2007). *The Adaptive Web*. p. 325.
2. Robin Burke , [Hybrid Web Recommender Systems](http://www.dcs.warwick.ac.uk/~acristea/courses/CS411/2010/Book%20-%20The%20Adaptive%20Web/HybridWebRecommenderSystems.pdf), pp. 377-408, The Adaptive Web, Peter Brusilovsky, Alfred Kobsa, Wolfgang Nejdl (Ed.), Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, Lecture Notes in Computer Science, Vol. 4321, May 2007, 978-3-540-72078-2.
Y
Yi Wang 已提交
412
3. P. Resnick, N. Iacovou, etc. “[GroupLens: An Open Architecture for Collaborative Filtering of Netnews](http://ccs.mit.edu/papers/CCSWP165.html)”, Proceedings of ACM Conference on Computer Supported Cooperative Work, CSCW 1994. pp.175-186.
H
Helin Wang 已提交
413
4. Sarwar, Badrul, et al. "[Item-based collaborative filtering recommendation algorithms.](http://files.grouplens.org/papers/www10_sarwar.pdf)" *Proceedings of the 10th International Conference on World Wide Web*. ACM, 2001.
Y
Yi Wang 已提交
414
5. Kautz, Henry, Bart Selman, and Mehul Shah. "[Referral Web: Combining Social networks and collaborative filtering.](http://www.cs.cornell.edu/selman/papers/pdf/97.cacm.refweb.pdf)" Communications of the ACM 40.3 (1997): 63-65. APA
H
Helin Wang 已提交
415
6. Yuan, Jianbo, et al. ["Solving Cold-Start Problem in Large-scale Recommendation Engines: A Deep Learning Approach."](https://arxiv.org/pdf/1611.05480v1.pdf) *arXiv preprint arXiv:1611.05480* (2016).
Y
Yi Wang 已提交
416 417 418
7. Covington P, Adams J, Sargin E. [Deep neural networks for youtube recommendations](https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/45530.pdf)[C]//Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016: 191-198.

<br/>
419
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
420

Y
Yi Wang 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
    code = code.replace(/&amp;/g, "&")
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
    code = code.replace(/&nbsp;/g, " ")
    return hljs.highlightAuto(code, [lang]).value;
  }
});
document.getElementById("context").innerHTML = marked(
439
        document.getElementById("markdown").innerHTML)
Y
Yi Wang 已提交
440 441
</script>
</body>