train_conv.py 5.1 KB
Newer Older
S
sidgoyal78 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
S
sidgoyal78 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
import paddle
import paddle.fluid as fluid
from functools import partial
import numpy as np

CLASS_DIM = 2
EMB_DIM = 128
HID_DIM = 512
BATCH_SIZE = 128


def convolution_net(data, input_dim, class_dim, emb_dim, hid_dim):
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=3,
        act="tanh",
        pool_type="sqrt")
    conv_4 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=4,
        act="tanh",
        pool_type="sqrt")
    prediction = fluid.layers.fc(
        input=[conv_3, conv_4], size=class_dim, act="softmax")
    return prediction


def inference_program(word_dict):
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)

    dict_dim = len(word_dict)
    net = convolution_net(data, dict_dim, CLASS_DIM, EMB_DIM, HID_DIM)
    return net


def train_program(word_dict):
    prediction = inference_program(word_dict)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(cost)
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return [avg_cost, accuracy]


def optimizer_func():
    return fluid.optimizer.Adagrad(learning_rate=0.002)


def train(use_cuda, train_program, params_dirname):
72
    import time
S
sidgoyal78 已提交
73

74 75
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    print("Loading IMDB word dict....")
S
sidgoyal78 已提交
76
    word_dict = paddle.dataset.imdb.word_dict()
77 78 79 80 81 82 83 84 85 86 87 88

    print("Reading training data....")

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=25000),
        batch_size=BATCH_SIZE)

    print("Reading testing data....")
    test_reader = paddle.batch(
        paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)

S
sidgoyal78 已提交
89 90 91 92 93
    trainer = fluid.Trainer(
        train_func=partial(train_program, word_dict),
        place=place,
        optimizer_func=optimizer_func)

94 95
    feed_order = ['words', 'label']

S
sidgoyal78 已提交
96
    def event_handler(event):
97
        if isinstance(event, fluid.EndStepEvent):
S
sidgoyal78 已提交
98
            avg_cost, acc = trainer.test(
99
                reader=test_reader, feed_order=feed_order)
S
sidgoyal78 已提交
100

101 102
            print('Step {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
                event.step, avg_cost, acc))
S
sidgoyal78 已提交
103 104 105

            print("Step {0}, Epoch {1} Metrics {2}".format(
                event.step, event.epoch, map(np.array, event.metrics)))
106 107

            if event.step == 10:  # Adjust this number for accuracy
S
sidgoyal78 已提交
108 109 110 111 112 113 114
                trainer.save_params(params_dirname)
                trainer.stop()

    trainer.train(
        num_epochs=1,
        event_handler=event_handler,
        reader=train_reader,
115
        feed_order=feed_order)
S
sidgoyal78 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154


def infer(use_cuda, inference_program, params_dirname=None):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    word_dict = paddle.dataset.imdb.word_dict()

    inferencer = fluid.Inferencer(
        infer_func=partial(inference_program, word_dict),
        param_path=params_dirname,
        place=place)

    # Setup input by creating LoDTensor to represent sequence of words.
    # Here each word is the basic element of the LoDTensor and the shape of 
    # each word (base_shape) should be [1] since it is simply an index to 
    # look up for the corresponding word vector.
    # Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
    # which has only one lod level. Then the created LoDTensor will have only 
    # one higher level structure (sequence of words, or sentence) than the basic 
    # element (word). Hence the LoDTensor will hold data for three sentences of 
    # length 3, 4 and 2, respectively. 
    # Note that lod info should be a list of lists.
    lod = [[3, 4, 2]]
    base_shape = [1]
    # The range of random integers is [low, high]
    tensor_words = fluid.create_random_int_lodtensor(
        lod, base_shape, place, low=0, high=len(word_dict) - 1)
    results = inferencer.infer({'words': tensor_words})
    print("infer results: ", results)


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    params_dirname = "understand_sentiment_conv.inference.model"
    train(use_cuda, train_program, params_dirname)
    infer(use_cuda, inference_program, params_dirname)


if __name__ == '__main__':
155 156
    use_cuda = os.getenv('WITH_GPU', '0') != '0'
    main(use_cuda)