gan_trainer.py 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import random
import numpy
import cPickle
import sys, os
from PIL import Image

from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
import matplotlib.pyplot as plt


def CHECK_EQ(a, b):
    assert a == b, "a=%s, b=%s" % (a, b)


def copy_shared_parameters(src, dst):
    '''
    copy the parameters from src to dst
    :param src: the source of the parameters
    :type src: GradientMachine
    :param dst: the destination of the parameters
    :type dst: GradientMachine
    '''
    src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())]
    src_params = dict([(p.getName(), p) for p in src_params])

    for i in xrange(dst.getParameterSize()):
        dst_param = dst.getParameter(i)
        src_param = src_params.get(dst_param.getName(), None)
        if src_param is None:
            continue
        src_value = src_param.getBuf(api.PARAMETER_VALUE)
        dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
        CHECK_EQ(len(src_value), len(dst_value))
        dst_value.copyFrom(src_value)
        dst_param.setValueUpdated()


def print_parameters(src):
    src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())]

    print "***************"
    for p in src_params:
        print "Name is %s" % p.getName()
        print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray(
        )


W
wangyang59 已提交
65 66 67 68 69 70
# synthesize 2-D uniform data
def load_uniform_data():
    data = numpy.random.rand(1000000, 2).astype('float32')
    return data


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
def load_mnist_data(imageFile):
    f = open(imageFile, "rb")
    f.read(16)

    # Define number of samples for train/test
    if "train" in imageFile:
        n = 60000
    else:
        n = 10000

    data = numpy.fromfile(f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28))
    data = data / 255.0 * 2.0 - 1.0

    f.close()
    return data.astype('float32')


def load_cifar_data(cifar_path):
    batch_size = 10000
    data = numpy.zeros((5 * batch_size, 32 * 32 * 3), dtype="float32")
    for i in range(1, 6):
        file = cifar_path + "/data_batch_" + str(i)
        fo = open(file, 'rb')
        dict = cPickle.load(fo)
        fo.close()
        data[(i - 1) * batch_size:(i * batch_size), :] = dict["data"]

    data = data / 255.0 * 2.0 - 1.0
    return data


W
wangyang59 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
def plot2DScatter(data, outputfile):
    '''
    Plot the data as a 2D scatter plot and save to outputfile
    data needs to be two dimensinoal
    '''
    x = data[:, 0]
    y = data[:, 1]
    logger.info("The mean vector is %s" % numpy.mean(data, 0))
    logger.info("The std vector is %s" % numpy.std(data, 0))

    heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50)
    extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

    plt.clf()
    plt.scatter(x, y)
    plt.savefig(outputfile, bbox_inches='tight')
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142


def merge(images, size):
    if images.shape[1] == 28 * 28:
        h, w, c = 28, 28, 1
    else:
        h, w, c = 32, 32, 3
    img = numpy.zeros((h * size[0], w * size[1], c))
    for idx in xrange(size[0] * size[1]):
        i = idx % size[1]
        j = idx // size[1]
        img[j*h:j*h+h, i*w:i*w+w, :] = \
          ((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0)
    return img.astype('uint8')


def save_images(images, path):
    merged_img = merge(images, [8, 8])
    if merged_img.shape[2] == 1:
        im = Image.fromarray(numpy.squeeze(merged_img)).convert('RGB')
    else:
        im = Image.fromarray(merged_img, mode="RGB")
    im.save(path)


W
wangyang59 已提交
143 144 145 146 147 148 149
def save_results(samples, path, data_source):
    if data_source == "uniform":
        plot2DScatter(samples, path)
    else:
        save_images(samples, path)


150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
def get_real_samples(batch_size, data_np):
    return data_np[numpy.random.choice(
        data_np.shape[0], batch_size, replace=False), :]


def get_noise(batch_size, noise_dim):
    return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')


def get_fake_samples(generator_machine, batch_size, noise):
    gen_inputs = api.Arguments.createArguments(1)
    gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
    gen_outputs = api.Arguments.createArguments(0)
    generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
    fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
    return fake_samples


def get_training_loss(training_machine, inputs):
    outputs = api.Arguments.createArguments(0)
    training_machine.forward(inputs, outputs, api.PASS_TEST)
    loss = outputs.getSlotValue(0).copyToNumpyMat()
    return numpy.mean(loss)


def prepare_discriminator_data_batch_pos(batch_size, data_np):
    real_samples = get_real_samples(batch_size, data_np)
    labels = numpy.ones(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(real_samples))
    inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
    return inputs


def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise):
    fake_samples = get_fake_samples(generator_machine, batch_size, noise)
    labels = numpy.zeros(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(fake_samples))
    inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
    return inputs


def prepare_generator_data_batch(batch_size, noise):
    label = numpy.ones(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
    inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(label))
    return inputs


def find(iterable, cond):
    for item in iterable:
        if cond(item):
            return item
    return None


def get_layer_size(model_conf, layer_name):
    layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
    assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
    return layer_conf.size


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("-d", "--data_source", help="mnist or cifar or uniform")
    parser.add_argument(
        "--use_gpu", default="1", help="1 means use gpu for training")
    parser.add_argument("--gpu_id", default="0", help="the gpu_id parameter")
W
wangyang59 已提交
220 221 222 223
    parser.add_argument(
        "--model_dir",
        default="",
        help="model path for generating samples, empty means training mode")
224 225 226
    args = parser.parse_args()
    data_source = args.data_source
    use_gpu = args.use_gpu
W
wangyang59 已提交
227
    model_dir = args.model_dir
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    assert data_source in ["mnist", "cifar", "uniform"]
    assert use_gpu in ["0", "1"]

    if not os.path.exists("./%s_samples/" % data_source):
        os.makedirs("./%s_samples/" % data_source)

    if not os.path.exists("./%s_params/" % data_source):
        os.makedirs("./%s_params/" % data_source)

    api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10',
                   '--log_period=100', '--gpu_id=' + args.gpu_id,
                   '--save_dir=' + "./%s_params/" % data_source)

    if data_source == "uniform":
        conf = "gan_conf.py"
        num_iter = 10000
    else:
        conf = "gan_conf_image.py"
        num_iter = 1000

    gen_conf = parse_config(conf, "mode=generator_training,data=" + data_source)
    dis_conf = parse_config(conf,
                            "mode=discriminator_training,data=" + data_source)
    generator_conf = parse_config(conf, "mode=generator,data=" + data_source)
W
wangyang59 已提交
252 253

    logger.info(str(generator_conf.model_config))
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    batch_size = dis_conf.opt_config.batch_size
    noise_dim = get_layer_size(gen_conf.model_config, "noise")

    if data_source == "mnist":
        data_np = load_mnist_data("./data/mnist_data/train-images-idx3-ubyte")
    elif data_source == "cifar":
        data_np = load_cifar_data("./data/cifar-10-batches-py/")
    else:
        data_np = load_uniform_data()

    # this creates a gradient machine for discriminator
    dis_training_machine = api.GradientMachine.createFromConfigProto(
        dis_conf.model_config)
    # this create a gradient machine for generator    
    gen_training_machine = api.GradientMachine.createFromConfigProto(
        gen_conf.model_config)
    # generator_machine is used to generate data only, which is used for
    # training discriminator
    generator_machine = api.GradientMachine.createFromConfigProto(
        generator_conf.model_config)

W
wangyang59 已提交
275 276 277 278 279 280
    # In the generating settings, use previously trained model to generate 
    # fake samples
    if model_dir != "":
        generator_machine.loadParameters(model_dir)
        noise = get_noise(batch_size, noise_dim)
        fake_samples = get_fake_samples(generator_machine, batch_size, noise)
W
wangyang59 已提交
281 282
        save_results(fake_samples, "./generated_%s_samples.png" % data_source,
                     data_source)
W
wangyang59 已提交
283
        return
284

W
wangyang59 已提交
285
    dis_trainer = api.Trainer.create(dis_conf, dis_training_machine)
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    gen_trainer = api.Trainer.create(gen_conf, gen_training_machine)

    dis_trainer.startTrain()
    gen_trainer.startTrain()

    # Sync parameters between networks (GradientMachine) at the beginning
    copy_shared_parameters(gen_training_machine, dis_training_machine)
    copy_shared_parameters(gen_training_machine, generator_machine)

    # constrain that either discriminator or generator can not be trained
    # consecutively more than MAX_strike times
    curr_train = "dis"
    curr_strike = 0
    MAX_strike = 5

    for train_pass in xrange(100):
        dis_trainer.startTrainPass()
        gen_trainer.startTrainPass()
        for i in xrange(num_iter):
            # Do forward pass in discriminator to get the dis_loss
            noise = get_noise(batch_size, noise_dim)
            data_batch_dis_pos = prepare_discriminator_data_batch_pos(
                batch_size, data_np)
            dis_loss_pos = get_training_loss(dis_training_machine,
                                             data_batch_dis_pos)

            data_batch_dis_neg = prepare_discriminator_data_batch_neg(
                generator_machine, batch_size, noise)
            dis_loss_neg = get_training_loss(dis_training_machine,
                                             data_batch_dis_neg)

            dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0

            # Do forward pass in generator to get the gen_loss
            data_batch_gen = prepare_generator_data_batch(batch_size, noise)
            gen_loss = get_training_loss(gen_training_machine, data_batch_gen)

            if i % 100 == 0:
                print "d_pos_loss is %s     d_neg_loss is %s" % (dis_loss_pos,
                                                                 dis_loss_neg)
                print "d_loss is %s    g_loss is %s" % (dis_loss, gen_loss)

            # Decide which network to train based on the training history
            # And the relative size of the loss        
            if (not (curr_train == "dis" and curr_strike == MAX_strike)) and \
               ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss):
                if curr_train == "dis":
                    curr_strike += 1
                else:
                    curr_train = "dis"
                    curr_strike = 1
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
                copy_shared_parameters(dis_training_machine,
                                       gen_training_machine)

            else:
                if curr_train == "gen":
                    curr_strike += 1
                else:
                    curr_train = "gen"
                    curr_strike = 1
                gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)
                copy_shared_parameters(gen_training_machine,
                                       dis_training_machine)
                copy_shared_parameters(gen_training_machine, generator_machine)

        dis_trainer.finishTrainPass()
        gen_trainer.finishTrainPass()
        # At the end of each pass, save the generated samples/images
        fake_samples = get_fake_samples(generator_machine, batch_size, noise)
W
wangyang59 已提交
357 358
        save_results(fake_samples, "./%s_samples/train_pass%s.png" %
                     (data_source, train_pass), data_source)
359 360 361 362 363 364
    dis_trainer.finishTrain()
    gen_trainer.finishTrain()


if __name__ == '__main__':
    main()