README.en.md 20.9 KB
Newer Older
Y
Yuanpeng 已提交
1 2
# Recognize Digits

3
The source code for this tutorial is under [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/recognize_digits). First-time readers, please refer to PaddlePaddle [installation instructions](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html).
Y
Yuanpeng 已提交
4

Y
Yuanpeng 已提交
5
## Introduction
6
When we learn a new programming language, the first task is usually to write a program that prints "Hello World." In Machine Learning or Deep Learning, the equivalent task is to train a model to perform handwritten digit recognition with [MNIST](http://yann.lecun.com/exdb/mnist/) dataset. Handwriting recognition is a typical image classification problem. The problem is relatively easy, and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1). The input image is a 28x28 matrix, and the label is one of the digits from 0 to 9. Each image is normalized in size and centered.
7

8 9
<p align="center">
<img src="image/mnist_example_image.png" width="400"><br/>
Y
Yuanpeng 已提交
10
Fig. 1. Examples of MNIST images
11 12
</p>

13
The MNIST dataset is created from the [NIST](https://www.nist.gov/srd/nist-special-database-19) Special Database 3 (SD-3) and the Special Database 1 (SD-1). The SD-3 is labeled by the staff of the U.S. Census Bureau, while SD-1 is labeled by high school students the in U.S. Therefore the SD-3 is cleaner and easier to recognize than the SD-1 dataset. Yann LeCun et al. used half of the samples from each of SD-1 and SD-3 to create the MNIST training set (60,000 samples) and test set (10,000 samples), where training set was labeled by 250 different annotators, and it was guaranteed that there wasn't a complete overlap of annotators of training set and test set.
Y
Yuanpeng 已提交
14

15
Yann LeCun, one of the founders of Deep Learning, contributed highly towards handwritten character recognition in early days and proposed CNN (Convolutional Neural Network), which drastically improved recognition capability for handwritten characters. CNNs are now a critical concept in Deep Learning. From Yann LeCun's first proposal of LeNet to those winning models in ImageNet, such as VGGNet, GoogLeNet, ResNet, etc. (Please refer to [Image Classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification) tutorial), CNN achieved a series of impressive results in Image Classification tasks.
Y
Yuanpeng 已提交
16

17 18 19
Many algorithms are tested on MNIST. In 1998, LeCun experimented with single layer linear classifier, MLP (Multilayer Perceptron) and Multilayer CNN LeNet. These algorithms constantly reduced test error from 12% to 0.7% \[[1](#References)\]. Since then, researchers have worked on many algorithms such as k-NN (K-Nearest Neighbors) \[[2](#References)\], Support Vector Machine (SVM) \[[3](#References)\], Neural Networks \[[4-7](#References)\] and Boosting \[[8](#References)\]. Various preprocessing methods like distortion removal, noise removal, blurring etc. have also been applied to increase recognition accuracy.

In this tutorial, we tackle the task of handwritten character recognition. We start with a simple softmax regression model and guide our readers step-by-step to improve this model's performance on the task of recognition.
Y
Yuanpeng 已提交
20

21

Y
Yuanpeng 已提交
22 23
## Model Overview

Y
Yuanpeng 已提交
24
Before introducing classification algorithms and training procedure, we provide some definitions:
25 26 27
- $X$ is the input: Input is a $28\times28$ MNIST image. It is flattened to a $784$ dimensional vector. $X=\left ( x_0, x_1, \dots, x_{783} \right )$.
- $Y$ is the output: Output of the classifier is 1 of the 10 classes (digits from 0 to 9). $Y=\left ( y_0, y_1, \dots, y_9 \right )$. Each dimension $y_i$ represents the probability that the input image belongs to class $i$.
- $L$ is the ground truth label: $L=\left ( l_0, l_1, \dots, l_9 \right )$. It is also 10 dimensional, but only one dimension is 1 and all others are all 0.
Y
Yuanpeng 已提交
28

Y
Yuanpeng 已提交
29 30
### Softmax Regression

31
In a simple softmax regression model, the input is fed to fully connected layers and a softmax function is applied to get probabilities of multiple output classes\[[9](#References)\].
Y
Yuanpeng 已提交
32

33
Input $X$ is multiplied with weights $W$, and bias $b$ is added to generate activations.
Y
Yuanpeng 已提交
34

L
Luo Tao 已提交
35
$$ y_i = \text{softmax}(\sum_j W_{i,j}x_j + b_i) $$
Y
Yuanpeng 已提交
36

L
Luo Tao 已提交
37
where $ \text{softmax}(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}} $
Y
Yuanpeng 已提交
38

39
For an $N$ class classification problem with $N$ output nodes, an $N$ dimensional vector is normalized to $N$ real values in the range [0, 1], each representing the probability of the sample to belong to the class. Here $y_i$ is the prediction probability that an image is digit $i$.
Y
Yuanpeng 已提交
40

41
In such a classification problem, we usually use the cross entropy loss function:
Y
Yuanpeng 已提交
42

L
Luo Tao 已提交
43
$$  \text{crossentropy}(label, y) = -\sum_i label_ilog(y_i) $$
Y
Yuanpeng 已提交
44

L
Luo Tao 已提交
45
Fig. 2 shows a softmax regression network, with weights in blue, and bias in red. +1 indicates bias is 1.
Y
Yuanpeng 已提交
46 47

<p align="center">
48
<img src="image/softmax_regression_en.png" width=400><br/>
Y
Yuanpeng 已提交
49 50 51
Fig. 2. Softmax regression network architecture<br/>
</p>

52
### Multilayer Perceptron
Y
Yuanpeng 已提交
53

54
The Softmax regression model described above uses the simplest two-layer neural network, i.e. it only contains an input layer and an output layer. So its regression ability is limited. To achieve better recognition results, we consider adding several hidden layers \[[10](#References)\] between the input layer and the output layer.
Y
Yuanpeng 已提交
55

56
1.  After the first hidden layer, we get $ H_1 = \phi(W_1X + b_1) $, where $\phi$ is the activation function. Some common ones are sigmoid, tanh and ReLU.
Y
Yuanpeng 已提交
57
2.  After the second hidden layer, we get $ H_2 = \phi(W_2H_1 + b_2) $.
L
Luo Tao 已提交
58
3.  Finally, after output layer, we get $Y=\text{softmax}(W_3H_2 + b_3)$, the final classification result vector.
Y
Yuanpeng 已提交
59

L
Luo Tao 已提交
60
Fig. 3. is Multilayer Perceptron network, with weights in blue, and bias in red. +1 indicates bias is 1.
Y
Yuanpeng 已提交
61 62

<p align="center">
63
<img src="image/mlp_en.png" width=500><br/>
Y
Yuanpeng 已提交
64
Fig. 3. Multilayer Perceptron network architecture<br/>
65

Y
Yuanpeng 已提交
66 67
</p>

68 69
### Convolutional Neural Network

70
#### Convolutional Layer
71 72

<p align="center">
D
dangqingqing 已提交
73
<img src="image/conv_layer.png" width='750'><br/>
74 75 76
Fig. 4. Convolutional layer<br/>
</p>

77
The Convolutional layer is the core of a Convolutional Neural Network. The parameters in this layer are composed of a set of filters or kernels. In the forward step, each kernel moves horizontally and vertically, we compute a dot product of the kernel and the input at the corresponding positions, to this result we add bias and apply an activation function. The result is a two-dimensional activation map. For example, some kernel may recognize corners, and some may recognize circles. These convolution kernels may respond strongly to the corresponding features.
78

79
Fig. 4 is a dynamic graph of a convolutional layer, where depths are not shown for simplicity. Input is $W_1=5, H_1=5, D_1=3$. In fact, this is a common representation for colored images. $W_1$ and  $H_1$ of a colored image correspond to the width and height respectively. $D_1$ corresponds to the 3 color channels for RGB. The parameters of the convolutional layer are $K=2, F=3, S=2, P=1$. $K$ is the number of kernels. Here, $Filter W_0$ and $Filter   W_1$ are two kernels. $F$ is kernel size. $W0$ and $W1$ are both $3\times3$ matrix in all depths. $S$ is the stride. Kernels move leftwards or downwards by 2 units each time. $P$ is padding, an extension of the input. The gray area in the figure shows zero padding with size 1.
80

81
#### Pooling Layer
82 83

<p align="center">
84
<img src="image/max_pooling_en.png" width="400px"><br/>
85 86 87
Fig. 5 Pooling layer<br/>
</p>

88
A Pooling layer performs downsampling. The main functionality of this layer is to reduce computation by reducing the network parameters. It also prevents overfitting to some extent. Usually, a pooling layer is added after a convolutional layer. Pooling layer can be of various types like max pooling, average pooling, etc. Max pooling uses rectangles to segment the input layer into several parts and computes the maximum value in each part as the output (Fig. 5.)
89

90
#### LeNet-5 Network
Y
Yuanpeng 已提交
91 92

<p align="center">
93
<img src="image/cnn_en.png"><br/>
Y
Yuanpeng 已提交
94 95 96
Fig. 6. LeNet-5 Convolutional Neural Network architecture<br/>
</p>

97
[LeNet-5](http://yann.lecun.com/exdb/lenet/) is one of the simplest Convolutional Neural Networks. Fig. 6. shows its architecture: A 2-dimensional input image is fed into two sets of convolutional layers and pooling layers, this output is then fed to a fully connected layer and a softmax classifier. The following three properties of convolution enable LeNet-5 to better recognize images than Multilayer fully connected perceptrons:
Y
Yuanpeng 已提交
98

99 100 101
- 3D properties of neurons: a convolutional layer is organized by width, height and depth. Neurons in each layer are connected to only a small region in the previous layer. This region is called the receptive field.
- Local connection: A CNN utilizes the local space correlation by connecting local neurons. This design guarantees that the learned filter has a strong response to local input features. Stacking many such layers generates a non-linear filter that is more global. This enables the network to first obtain good representation for small parts of input and then combine them to represent a larger region.
- Sharing weights: In a CNN, computation is iterated on shared parameters (weights and bias) to form a feature map. This means all neurons in the same depth of the output respond to the same feature. This allows detecting a feature regardless of its position in the input and enables translation equivariance.
Y
Yuanpeng 已提交
102

103
For more details on Convolutional Neural Networks, please refer to [this Stanford open course]( http://cs231n.github.io/convolutional-networks/ ) and [this Image Classification](https://github.com/PaddlePaddle/book/blob/develop/image_classification/README.md) tutorial.
Y
Yuanpeng 已提交
104

105
### List of Common Activation Functions  
106
- Sigmoid activation function: $ f(x) = sigmoid(x) = \frac{1}{1+e^{-x}} $
Y
Yuanpeng 已提交
107

108
- Tanh activation function: $ f(x) = tanh(x) = \frac{e^x-e^{-x}}{e^x+e^{-x}} $
Y
Yuanpeng 已提交
109

110
  In fact, tanh function is just a rescaled version of the sigmoid function. It is obtained by magnifying the value of the sigmoid function and moving it downwards by 1.
Y
Yuanpeng 已提交
111

112
- ReLU activation function: $ f(x) = max(0, x) $
Y
Yuanpeng 已提交
113

114
For more information, please refer to [Activation functions on Wikipedia](https://en.wikipedia.org/wiki/Activation_function).
Y
Yuanpeng 已提交
115

Y
Yuanpeng 已提交
116 117
## Data Preparation

118
PaddlePaddle provides a Python module, `paddle.dataset.mnist`, which downloads and caches the [MNIST dataset](http://yann.lecun.com/exdb/mnist/).  The cache is under `/home/username/.cache/paddle/dataset/mnist`:
Y
Yuanpeng 已提交
119 120 121 122 123 124 125


|    File name          |       Description              |
|----------------------|-------------------------|
|train-images-idx3-ubyte|  Training images, 60,000 |
|train-labels-idx1-ubyte|  Training labels, 60,000 |
|t10k-images-idx3-ubyte |  Evaluation images, 10,000 |
Y
Yuanpeng 已提交
126
|t10k-labels-idx1-ubyte |  Evaluation labels, 10,000 |
Y
Yuanpeng 已提交
127 128


129
## Model Configuration
Y
Yuanpeng 已提交
130

131
A PaddlePaddle program starts from importing the API package:
Y
Yuanpeng 已提交
132 133

```python
134
import paddle.v2 as paddle
Y
Yuanpeng 已提交
135 136
```

137
We want to use this program to demonstrate multiple kinds of models.  Let define each of them as a Python function:
138

Y
Yi Wang 已提交
139
- softmax regression: the network has a fully-connection layer with softmax activation:
Y
Yuanpeng 已提交
140 141 142

```python
def softmax_regression(img):
143 144 145
    predict = paddle.layer.fc(input=img,
                              size=10,
                              act=paddle.activation.Softmax())
Y
Yuanpeng 已提交
146 147
    return predict
```
148

Y
Yi Wang 已提交
149
- multi-layer perceptron: this network has two hidden fully-connected layers, one with LeRU and the other with softmax activation:
Y
Yuanpeng 已提交
150 151 152

```python
def multilayer_perceptron(img):
153 154 155 156 157 158 159
    hidden1 = paddle.layer.fc(input=img, size=128, act=paddle.activation.Relu())
    hidden2 = paddle.layer.fc(input=hidden1,
                              size=64,
                              act=paddle.activation.Relu())
    predict = paddle.layer.fc(input=hidden2,
                              size=10,
                              act=paddle.activation.Softmax())
Y
Yuanpeng 已提交
160 161 162
    return predict
```

163
- convolution network LeNet-5: the input image is fed through two convolution-pooling layer, a fully-connected layer, and the softmax output layer:
Y
Yuanpeng 已提交
164 165 166

```python
def convolutional_neural_network(img):
167 168

    conv_pool_1 = paddle.networks.simple_img_conv_pool(
Y
Yuanpeng 已提交
169 170 171 172 173 174
        input=img,
        filter_size=5,
        num_filters=20,
        num_channel=1,
        pool_size=2,
        pool_stride=2,
175 176 177
        act=paddle.activation.Tanh())

    conv_pool_2 = paddle.networks.simple_img_conv_pool(
Y
Yuanpeng 已提交
178 179 180 181 182 183
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        num_channel=20,
        pool_size=2,
        pool_stride=2,
184
        act=paddle.activation.Tanh())
Y
Yuanpeng 已提交
185

186 187 188
    fc1 = paddle.layer.fc(input=conv_pool_2,
                          size=128,
                          act=paddle.activation.Tanh())
Y
Yuanpeng 已提交
189

190 191 192 193
    predict = paddle.layer.fc(input=fc1,
                              size=10,
                              act=paddle.activation.Softmax())
    return predict
Y
Yuanpeng 已提交
194 195
```

196
PaddlePaddle provides a special layer `layer.data` for reading data. Let us create a data layer for reading images and connect it to a classification network created using one of above three functions.  We also need a cost layer for training the model.
Y
Yuanpeng 已提交
197

198
```python
L
Luo Tao 已提交
199
paddle.init(use_gpu=False, trainer_count=1)
Y
Yuanpeng 已提交
200

L
Luo Tao 已提交
201 202 203 204
images = paddle.layer.data(
    name='pixel', type=paddle.data_type.dense_vector(784))
label = paddle.layer.data(
    name='label', type=paddle.data_type.integer_value(10))
Y
Yuanpeng 已提交
205

L
Luo Tao 已提交
206 207 208
predict = softmax_regression(images)
#predict = multilayer_perceptron(images) # uncomment for MLP
#predict = convolutional_neural_network(images) # uncomment for LeNet5
Y
Yuanpeng 已提交
209

L
Luo Tao 已提交
210
cost = paddle.layer.classification_cost(input=predict, label=label)
Y
Yuanpeng 已提交
211 212
```

213
Now, it is time to specify training parameters. The number 0.9 in the following `Momentum` optimizer means that 90% of the current the momentum comes from the momentum of the previous iteration.
Y
Yuanpeng 已提交
214

215
```python
L
Luo Tao 已提交
216
parameters = paddle.parameters.create(cost)
Y
Yuanpeng 已提交
217

L
Luo Tao 已提交
218 219 220 221
optimizer = paddle.optimizer.Momentum(
    learning_rate=0.1 / 128.0,
    momentum=0.9,
    regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128))
Y
Yuanpeng 已提交
222

L
Luo Tao 已提交
223 224 225
trainer = paddle.trainer.SGD(cost=cost,
                             parameters=parameters,
                             update_equation=optimizer)
Y
Yuanpeng 已提交
226 227
```

Y
Yi Wang 已提交
228
Then we specify the training data `paddle.dataset.movielens.train()` and testing data `paddle.dataset.movielens.test()`.  These two functions are *reader creators*, once called, returns a *reader*.  A reader is a Python function, which, once called, returns a Python generator, which yields instances of data.  
Y
Yuanpeng 已提交
229

230
Here `shuffle` is a reader decorator, which takes a reader A as its parameter, and returns a new reader B, where B calls A to read in `buffer_size` data instances everytime into a buffer, then shuffles and yield instances in the buffer.  If you want very shuffled data, try use a larger buffer size.
Y
Yuanpeng 已提交
231

232
`batch` is a special decorator, whose input is a reader and output is a *batch reader*, which doesn't yield an instance at a time, but a minibatch.
Y
Yuanpeng 已提交
233

234
```python
L
Luo Tao 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
lists = []

def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "Pass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
    if isinstance(event, paddle.event.EndPass):
        result = trainer.test(reader=paddle.reader.batched(
            paddle.dataset.mnist.test(), batch_size=128))
        print "Test with Pass %d, Cost %f, %s\n" % (
            event.pass_id, result.cost, result.metrics)
        lists.append((event.pass_id, result.cost,
                      result.metrics['classification_error_evaluator']))

trainer.train(
    reader=paddle.reader.batched(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=8192),
        batch_size=128),
    event_handler=event_handler,
    num_passes=100)
Y
Yuanpeng 已提交
257 258
```

259
During training, `trainer.train` invokes `event_handler` for certain events. This gives us a chance to print the training progress.
Y
Yuanpeng 已提交
260 261

```
L
Luo Tao 已提交
262 263 264 265 266 267
# Pass 0, Batch 0, Cost 2.780790, {'classification_error_evaluator': 0.9453125}
# Pass 0, Batch 100, Cost 0.635356, {'classification_error_evaluator': 0.2109375}
# Pass 0, Batch 200, Cost 0.326094, {'classification_error_evaluator': 0.1328125}
# Pass 0, Batch 300, Cost 0.361920, {'classification_error_evaluator': 0.1015625}
# Pass 0, Batch 400, Cost 0.410101, {'classification_error_evaluator': 0.125}
# Test with Pass 0, Cost 0.326659, {'classification_error_evaluator': 0.09470000118017197}
Y
Yuanpeng 已提交
268 269
```

Y
Yi Wang 已提交
270
After the training, we can check the model's prediction accuracy.
Y
Yuanpeng 已提交
271 272

```
L
Luo Tao 已提交
273 274 275 276
# find the best pass
best = sorted(lists, key=lambda list: float(list[1]))[0]
print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)
Y
Yuanpeng 已提交
277 278
```

279 280
Usually, with MNIST data, the softmax regression model can get accuracy around 92.34%, MLP can get about 97.66%, and convolution network can get up to around 99.20%.  Convolution layers have been widely considered a great invention for image processsing.

Y
Yuanpeng 已提交
281

Y
Yuanpeng 已提交
282
## Conclusion
283
This tutorial describes a few basic Deep Learning models viz. Softmax regression, Multilayer Perceptron Network and Convolutional Neural Network. The subsequent tutorials will derive more sophisticated models from these. So it is crucial to understand these models for future learning. When our model evolved from a simple softmax regression to slightly complex Convolutional Neural Network, the recognition accuracy on the MNIST data set achieved large improvement in accuracy. This is due to the Convolutional layers' local connections and parameter sharing. While learning new models in the future, we encourage the readers to understand the key ideas that lead a new model to improve results of an old one. Moreover, this tutorial introduced the basic flow of PaddlePaddle model design, starting with a dataprovider, model layer construction, to final training and prediction. Readers can leverage the flow used in this MNIST handwritten digit classification example and experiment with different data and network architectures to train models for classification tasks of their choice.
Y
Yuanpeng 已提交
284

Y
Yuanpeng 已提交
285
## References
286 287 288 289 290 291 292 293 294 295 296 297

1. LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. ["Gradient-based learning applied to document recognition."](http://ieeexplore.ieee.org/abstract/document/726791/) Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.
2. Wejéus, Samuel. ["A Neural Network Approach to Arbitrary SymbolRecognition on Modern Smartphones."](http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A753279&dswid=-434) (2014).
3. Decoste, Dennis, and Bernhard Schölkopf. ["Training invariant support vector machines."](http://link.springer.com/article/10.1023/A:1012454411458) Machine learning 46, no. 1-3 (2002): 161-190.
4. Simard, Patrice Y., David Steinkraus, and John C. Platt. ["Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis."](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.8494&rep=rep1&type=pdf) In ICDAR, vol. 3, pp. 958-962. 2003.
5. Salakhutdinov, Ruslan, and Geoffrey E. Hinton. ["Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure."](http://www.jmlr.org/proceedings/papers/v2/salakhutdinov07a/salakhutdinov07a.pdf) In AISTATS, vol. 11. 2007.
6. Cireşan, Dan Claudiu, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. ["Deep, big, simple neural nets for handwritten digit recognition."](http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00052) Neural computation 22, no. 12 (2010): 3207-3220.
7. Deng, Li, Michael L. Seltzer, Dong Yu, Alex Acero, Abdel-rahman Mohamed, and Geoffrey E. Hinton. ["Binary coding of speech spectrograms using a deep auto-encoder."](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.185.1908&rep=rep1&type=pdf) In Interspeech, pp. 1692-1695. 2010.
8. Kégl, Balázs, and Róbert Busa-Fekete. ["Boosting products of base classifiers."](http://dl.acm.org/citation.cfm?id=1553439) In Proceedings of the 26th Annual International Conference on Machine Learning, pp. 497-504. ACM, 2009.
9. Rosenblatt, Frank. ["The perceptron: A probabilistic model for information storage and organization in the brain."](http://psycnet.apa.org/journals/rev/65/6/386/) Psychological review 65, no. 6 (1958): 386.
10. Bishop, Christopher M. ["Pattern recognition."](http://s3.amazonaws.com/academia.edu.documents/30428242/bg0137.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1484816640&Signature=85Ad6%2Fca8T82pmHzxaSXermovIA%3D&response-content-disposition=inline%3B%20filename%3DPattern_recognition_and_machine_learning.pdf) Machine Learning 128 (2006): 1-58.

Y
Yuanpeng 已提交
298 299
<br/>
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="知识共享许可协议" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" href="http://purl.org/dc/dcmitype/Text" property="dct:title" rel="dct:type">This book</span> is created by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and uses <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Shared knowledge signature - non commercial use-Sharing 4.0 International Licensing Protocal</a>.