README.md 25.7 KB
Newer Older
Y
Yi Wang 已提交
1 2
# Machine Translation

M
Mimee 已提交
3
The source code of this tutorial is live at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation). Please refer to the [book running tutorial](https://github.com/PaddlePaddle/book#running-the-book) for getting started with Paddle.
Y
Yi Wang 已提交
4 5 6

## Background

7
Machine translation (MT) leverages computers to translate from one language to another. The language to be translated is referred to as the source language, while the language to be translated into is referred to as the target language. Thus, Machine translation is the process of translating from the source language to the target language. It is one of the most important research topics in the field of natural language processing.
Y
Yi Wang 已提交
8

M
Mimee 已提交
9

10
Early machine translation systems are mainly rule-based i.e. they rely on a language expert to specify the translation rules between the two languages. It is quite difficult to cover all the rules used in one language. So it is quite a challenge for language experts to specify all possible rules in two or more different languages. Hence, a major challenge in conventional machine translation has been the difficulty in obtaining a complete rule set \[[1](#references)\].
Y
Yi Wang 已提交
11 12


13
To address the aforementioned problems, statistical machine translation techniques have been developed. These techniques learn the translation rules from a large corpus, instead of being designed by a language expert. While these techniques overcome the bottleneck of knowledge acquisition, there are still quite a lot of challenges, for example:
Y
Yi Wang 已提交
14

J
juliecbd 已提交
15
1. Human designed features cannot cover all possible linguistic variations;
16

J
juliecbd 已提交
17
2. It is difficult to use global features;
18

J
juliecbd 已提交
19
3. The techniques heavily rely on pre-processing techniques like word alignment, word segmentation and tokenization, rule-extraction and syntactic parsing etc. The error introduced in any of these steps could accumulate and impact translation quality.
20 21 22



23
The recent development of deep learning provides new solutions to these challenges. The two main categories for deep learning based machine translation techniques are:
24

J
juliecbd 已提交
25
1. Techniques based on the statistical machine translation system but with some key components improved with neural networks, e.g., language model, reordering model (please refer to the left part of Figure 1);
26

J
juliecbd 已提交
27
2. Techniques mapping from source language to target language directly using a neural network, or end-to-end neural machine translation (NMT).
Y
Yi Wang 已提交
28 29 30

<p align="center">
<img src="image/nmt_en.png" width=400><br/>
31
Figure 1. Neural Network based Machine Translation
Y
Yi Wang 已提交
32 33 34
</p>


35
This tutorial will mainly introduce an NMT model and how to use PaddlePaddle to train it.
Y
Yi Wang 已提交
36 37 38

## Illustrative Results

39
Let's consider an example of Chinese-to-English translation. The model is given the following segmented sentence in Chinese
Y
Yi Wang 已提交
40 41 42
```text
这些 是 希望 的 曙光 和 解脱 的 迹象 .
```
43
After training and with a beam-search size of 3, the generated translations are as follows:
Y
Yi Wang 已提交
44
```text
L
Luo Tao 已提交
45 46 47
0 -5.36816   These are signs of hope and relief . <e>
1 -6.23177   These are the light of hope and relief . <e>
2 -7.7914  These are the light of hope and the relief of hope . <e>
Y
Yi Wang 已提交
48
```
49 50
- The first column corresponds to the id of the generated sentence; the second column corresponds to the score of the generated sentence (in descending order), where a larger value indicates better quality; the last column corresponds to the generated sentence.
- There are two special tokens: `<e>` denotes the end of a sentence while `<unk>` denotes unknown word, i.e., a word not in the training dictionary.
Y
Yi Wang 已提交
51 52 53

## Overview of the Model

54
This section will introduce Bi-directional Recurrent Neural Network, the Encoder-Decoder framework used in NMT, as well as the beam search algorithm.
Y
Yi Wang 已提交
55 56 57

### Bi-directional Recurrent Neural Network

M
Mimee 已提交
58
We already introduced an instance of bi-directional RNN in the [Semantic Role Labeling](https://github.com/PaddlePaddle/book/blob/develop/label_semantic_roles/README.md) chapter. Here we present another bi-directional RNN model with a different architecture proposed by Bengio et al. in \[[2](#references),[4](#references)\]. This model takes a sequence as input and outputs a fixed dimensional feature vector at each step, encoding the context information at the corresponding time step.
Y
Yi Wang 已提交
59

60
Specifically, this bi-directional RNN processes the input sequence in the original and reverse order respectively, and then concatenates the output feature vectors at each time step as the final output. Thus the output node at each time step contains information from the past and future as context. The figure below shows an unrolled bi-directional RNN. This network contains a forward RNN and backward RNN with six weight matrices: weight matrices from input to forward hidden layer and backward hidden ($W_1, W_3$), weight matrices from hidden to itself ($W_2, W_5$), matrices from forward hidden and backward hidden to output layer ($W_4, W_6$). Note that there are no connections between forward hidden and backward hidden layers.
Y
Yi Wang 已提交
61 62 63

<p align="center">
<img src="image/bi_rnn_en.png" width=450><br/>
64
Figure 3. Temporally unrolled bi-directional RNN
Y
Yi Wang 已提交
65 66 67 68
</p>

### Encoder-Decoder Framework

M
Mimee 已提交
69
The Encoder-Decoder\[[2](#references)\] framework aims to solve the mapping of a sequence to another sequence, for sequences with arbitrary lengths. The source sequence is encoded into a vector via an encoder, which is then decoded to a target sequence via a decoder by maximizing the predictive probability. Both the encoder and the decoder are typically implemented via RNN.
Y
Yi Wang 已提交
70 71 72

<p align="center">
<img src="image/encoder_decoder_en.png" width=700><br/>
73
Figure 4. Encoder-Decoder Framework
Y
Yi Wang 已提交
74 75 76 77 78 79
</p>

#### Encoder

There are three steps for encoding a sentence:

C
choijulie 已提交
80
1. One-hot vector representation of a word: Each word $x_i$ in the source sentence $x=\left \{ x_1,x_2,...,x_T \right \}$ is represented as a vector $w_i\epsilon \left \{ 0,1 \right \}^{\left | V \right |},i=1,2,...,T$   where $w_i$ has the same dimensionality as the size of the dictionary, i.e., $\left | V \right |$, and has an element of one at the location corresponding to the location of the word in the dictionary and zero elsewhere.
81

82
2. Word embedding as a representation in the low-dimensional semantic space: There are two problems with one-hot vector representation
83

J
juliecbd 已提交
84
  * The dimensionality of the vector is typically large, leading to the curse of dimensionality;
85

J
juliecbd 已提交
86
  * It is hard to capture the relationships between words, i.e., semantic similarities. Therefore, it is useful to project the one-hot vector into a low-dimensional semantic space as a dense vector with fixed dimensions, i.e., $s_i=Cw_i$ for the $i$-th word, with $C\epsilon R^{K\times \left | V \right |}$ as the projection matrix and $K$ is the dimensionality of the word embedding vector.
87 88

3. Encoding of the source sequence via RNN: This can be described mathematically as:
Y
Yi Wang 已提交
89

90
    $$h_i=\varnothing _\theta \left ( h_{i-1}, s_i \right )$$
91 92 93 94 95

    where
    $h_0$ is a zero vector,
    $\varnothing _\theta$ is a non-linear activation function, and
    $\mathbf{h}=\left \{ h_1,..., h_T \right \}$
96
    is the sequential encoding of the first $T$ words from the source sequence. The vector representation of the whole sentence can be represented as the encoding vector at the last time step $T$ from $\mathbf{h}$, or by temporal pooling over $\mathbf{h}$.
Y
Yi Wang 已提交
97 98


99
Bi-directional RNN can also be used in step (3) for more a complicated sentence encoding. This can be implemented using a bi-directional GRU. Forward GRU encodes the source sequence in its original order $(x_1,x_2,...,x_T)$, and generates a sequence of hidden states $(\overrightarrow{h_1},\overrightarrow{h_2},...,\overrightarrow{h_T})$. The backward GRU encodes the source sequence in reverse order, i.e., $(x_T,x_T-1,...,x_1)$ and generates $(\overleftarrow{h_1},\overleftarrow{h_2},...,\overleftarrow{h_T})$. Then for each word $x_i$, its complete hidden state is the concatenation of the corresponding hidden states from the two GRUs, i.e., $h_i=\left [ \overrightarrow{h_i^T},\overleftarrow{h_i^T} \right ]^{T}$.
Y
Yi Wang 已提交
100 101 102

<p align="center">
<img src="image/encoder_attention_en.png" width=500><br/>
103
Figure 5. Encoder using bi-directional GRU
Y
Yi Wang 已提交
104 105 106 107
</p>

#### Decoder

108
The goal of the decoder is to maximize the probability of the next correct word in the target language. The main idea is as follows:
Y
Yi Wang 已提交
109

110
1. At each time step $i$, given the encoding vector (or context vector) $c$ of the source sentence, the $i$-th word $u_i$ from the ground-truth target language and the RNN hidden state $z_i$, the next hidden state $z_{i+1}$ is computed as:
Y
Yi Wang 已提交
111 112 113 114 115 116

   $$z_{i+1}=\phi _{\theta '}\left ( c,u_i,z_i \right )$$
   where $\phi _{\theta '}$ is a non-linear activation function and $c=q\mathbf{h}$ is the context vector of the source sentence. Without using [attention](#Attention Mechanism), if the output of the [encoder](#Encoder) is the encoding vector at the last time step of the source sentence, then $c$ can be defined as $c=h_T$. $u_i$ denotes the $i$-th word from the target language sentence and $u_0$ denotes the beginning of the target language sentence (i.e., `<s>`), indicating the beginning of decoding. $z_i$ is the RNN hidden state at time step $i$ and $z_0$ is an all zero vector.

2. Calculate the probability $p_{i+1}$ for the $i+1$-th word in the target language sequence by normalizing $z_{i+1}$ using `softmax` as follows

117
   $$p\left ( u_{i+1}|u_{<i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$
Y
Yi Wang 已提交
118 119 120

   where $W_sz_{i+1}+b_z$ scores each possible words and is then normalized via softmax to produce the probability $p_{i+1}$ for the $i+1$-th word.

121 122
3. Compute the cost accoding to $p_{i+1}$ and $u_{i+1}$.
4. Repeat Steps 1-3, until all the words in the target language sentence have been processed.
Y
Yi Wang 已提交
123

124
The generation process of machine translation is to translate the source sentence into a sentence in the target language according to a pre-trained model. There are some differences between the decoding step in generation and training. Please refer to [Beam Search Algorithm](#Beam Search Algorithm) for details.
Y
Yi Wang 已提交
125 126 127

### Beam Search Algorithm

128
[Beam Search](http://en.wikipedia.org/wiki/Beam_search) is a heuristic search algorithm that explores a graph by expanding the most promising node in a limited set. It is typically used when the solution space is huge  (e.g., for machine translation, speech recognition), and there is not enough memory for all the possible solutions. For example, if we want to translate “`<s>你好<e>`” into English, even if there are only three words in the dictionary (`<s>`, `<e>`, `hello`), it is still possible to generate an infinite number of sentences, where the word `hello` can appear different number of times. Beam search could be used to find a good translation among them.
Y
Yi Wang 已提交
129

130
Beam search builds a search tree using breadth first search and sorts the nodes according to a heuristic cost (sum of the log probability of the generated words) at each level of the tree. Only a fixed number of nodes according to the pre-specified beam size (or beam width) are considered. Thus, only nodes with highest scores are expanded in the next level. This reduces the space and time requirements significantly. However, a globally optimal solution is not guaranteed.
Y
Yi Wang 已提交
131 132 133 134 135 136

The goal is to maximize the probability of the generated sequence when using beam search in decoding, The procedure is as follows:

1. At each time step $i$, compute the hidden state $z_{i+1}$ of the next time step according to the context vector $c$ of the source sentence, the $i$-th word $u_i$ generated for the target language sentence and the RNN hidden state $z_i$.
2. Normalize $z_{i+1}$ using `softmax` to get the probability $p_{i+1}$ for the $i+1$-th word for the target language sentence.
3. Sample the word $u_{i+1}$ according to $p_{i+1}$.
137
4. Repeat Steps 1-3, until end-of-sentence token `<e>` is generated or the maximum length of the sentence is reached.
Y
Yi Wang 已提交
138

139
Note: $z_{i+1}$ and $p_{i+1}$ are computed the same way as in [Decoder](#Decoder). In generation mode, each step is greedy in so there is no guarantee of a global optimum.
Y
Yi Wang 已提交
140

M
Mimee 已提交
141 142 143 144 145 146
## BLEU Score

Bilingual Evaluation understudy (BLEU) is a metric widely used for automatic machine translation proposed by IBM Watson Research Center in 2002\[[5](#References)\]. The closer the translation produced by a machine is to the translation produced by a human expert, the better the performance of the translation system.

To measure the closeness between machine translation and human translation, sentence precision is used. It compares the number of matched n-grams. More matches will lead to higher BLEU scores.

Y
Yi Wang 已提交
147 148
## Data Preparation

149
This tutorial uses a dataset from [WMT-14](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/), where [bitexts (after selection)](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/bitexts.tgz) is used as the training set, and [dev+test data](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz) is used as test and generation set.
Y
Yi Wang 已提交
150 151


152
### Data Preprocessing
Y
Yi Wang 已提交
153 154

There are two steps for pre-processing:
155
- Merge the source and target parallel corpus files into one file
Y
Yi Wang 已提交
156 157 158
  - Merge `XXX.src` and `XXX.trg` file pair as `XXX`
  - The $i$-th row in `XXX` is the concatenation of the $i$-th row from `XXX.src` with the $i$-th row from `XXX.trg`, separated with '\t'.

159
- Create source dictionary and target dictionary, each containing **DICTSIZE** number of words, including the most frequent (DICTSIZE - 3) fo word from the corpus and 3 special token `<s>` (begin of sequence), `<e>` (end of sequence)  and `<unk>` (unknown words that are not in the vocabulary).
Y
Yi Wang 已提交
160

161
### A Subset of Dataset
Y
Yi Wang 已提交
162

163
Because the full dataset is very big, to reduce the time for downloading the full dataset. PadddlePaddle package `paddle.dataset.wmt14` provides a preprocessed `subset of dataset`(http://paddlepaddle.bj.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz).
Y
Yi Wang 已提交
164

165
This subset has 193319 instances of training data and 6003 instances of test data. Dictionary size is 30000. Because of the limitation of size of the subset, the effectiveness of trained model from this subset is not guaranteed.
Y
Yi Wang 已提交
166

167
## Model Configuration
Y
Yi Wang 已提交
168

169
Our program starts with importing necessary packages and initializing some global variables:
Y
Yi Wang 已提交
170

171
```python
172
from __future__ import print_function
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
import contextlib

import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as pd
from paddle.fluid.executor import Executor
from functools import partial
import os

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
hidden_dim = 32
word_dim = 16
batch_size = 2
max_length = 8
topk_size = 50
beam_size = 2

decoder_size = hidden_dim
Y
Yi Wang 已提交
194 195
```

196
Then we implement encoder as follows:
Y
Yi Wang 已提交
197 198

   ```python
199 200 201 202 203 204 205 206 207 208 209 210 211 212
   def encoder(is_sparse):
    src_word_id = pd.data(
        name="src_word_id", shape=[1], dtype='int64', lod_level=1)
    src_embedding = pd.embedding(
        input=src_word_id,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr=fluid.ParamAttr(name='vemb'))

    fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = pd.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = pd.sequence_last_step(input=lstm_hidden0)
    return encoder_out
Y
Yi Wang 已提交
213
   ```
D
dangqingqing 已提交
214

215
Implement the decoder for training as follows:
D
dangqingqing 已提交
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
```python
   def train_decoder(context, is_sparse):
    trg_language_word = pd.data(
        name="target_language_word", shape=[1], dtype='int64', lod_level=1)
    trg_embedding = pd.embedding(
        input=trg_language_word,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr=fluid.ParamAttr(name='vemb'))

    rnn = pd.DynamicRNN()
    with rnn.block():
        current_word = rnn.step_input(trg_embedding)
        pre_state = rnn.memory(init=context)
        current_state = pd.fc(input=[current_word, pre_state],
                              size=decoder_size,
                              act='tanh')

        current_score = pd.fc(input=current_state,
                              size=target_dict_dim,
                              act='softmax')
        rnn.update_memory(pre_state, current_state)
        rnn.output(current_score)

    return rnn()
```
Y
Yi Wang 已提交
244

245
Implement the decoder for prediction as follows:
D
dangqingqing 已提交
246

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
```python
def decode(context, is_sparse):
    init_state = context
    array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length)
    counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True)

    # fill the first element with init_state
    state_array = pd.create_array('float32')
    pd.array_write(init_state, array=state_array, i=counter)

    # ids, scores as memory
    ids_array = pd.create_array('int64')
    scores_array = pd.create_array('float32')

    init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
    init_scores = pd.data(
        name="init_scores", shape=[1], dtype="float32", lod_level=2)

    pd.array_write(init_ids, array=ids_array, i=counter)
    pd.array_write(init_scores, array=scores_array, i=counter)

    cond = pd.less_than(x=counter, y=array_len)

    while_op = pd.While(cond=cond)
    with while_op.block():
        pre_ids = pd.array_read(array=ids_array, i=counter)
        pre_state = pd.array_read(array=state_array, i=counter)
        pre_score = pd.array_read(array=scores_array, i=counter)

        # expand the lod of pre_state to be the same with pre_score
        pre_state_expanded = pd.sequence_expand(pre_state, pre_score)

        pre_ids_emb = pd.embedding(
            input=pre_ids,
            size=[dict_size, word_dim],
            dtype='float32',
            is_sparse=is_sparse)

        # use rnn unit to update rnn
        current_state = pd.fc(input=[pre_state_expanded, pre_ids_emb],
                              size=decoder_size,
                              act='tanh')
        current_state_with_lod = pd.lod_reset(x=current_state, y=pre_score)
        # use score to do beam search
        current_score = pd.fc(input=current_state_with_lod,
                              size=target_dict_dim,
                              act='softmax')
294 295 296 297
        topk_scores, topk_indices = pd.topk(current_score, k=beam_size)
        # calculate accumulated scores after topk to reduce computation cost
        accu_scores = pd.elementwise_add(
            x=pd.log(topk_scores), y=pd.reshape(pre_score, shape=[-1]), axis=0)
298
        selected_ids, selected_scores = pd.beam_search(
299 300 301 302 303 304 305
            pre_ids,
            pre_score,
            topk_indices,
            accu_scores,
            beam_size,
            end_id=10,
            level=0)
306 307 308 309 310 311 312 313

        pd.increment(x=counter, value=1, in_place=True)

        # update the memories
        pd.array_write(current_state, array=state_array, i=counter)
        pd.array_write(selected_ids, array=ids_array, i=counter)
        pd.array_write(selected_scores, array=scores_array, i=counter)

314 315 316 317 318
        # update the break condition: up to the max length or all candidates of
        # source sentences have ended.
        length_cond = pd.less_than(x=counter, y=array_len)
        finish_cond = pd.logical_not(pd.is_empty(x=selected_ids))
        pd.logical_and(x=length_cond, y=finish_cond, out=cond)
319 320

    translation_ids, translation_scores = pd.beam_search_decode(
321
        ids=ids_array, scores=scores_array, beam_size=beam_size, end_id=10)
322 323 324

    return translation_ids, translation_scores
```
Y
Yi Wang 已提交
325 326


327 328
Then we define a `training_program` that uses the result from `encoder` and `train_decoder` to compute the cost with label data.
Also define `optimizer_func` to specify the optimizer.
329

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
```python
def train_program(is_sparse):
    context = encoder(is_sparse)
    rnn_out = train_decoder(context, is_sparse)
    label = pd.data(
        name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
    cost = pd.cross_entropy(input=rnn_out, label=label)
    avg_cost = pd.mean(cost)
    return avg_cost


def optimizer_func():
    return fluid.optimizer.Adagrad(
        learning_rate=1e-4,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.1))
```
L
Luo Tao 已提交
347

348
## Model Training
L
Luo Tao 已提交
349

350
### Specify training environment
D
dangqingqing 已提交
351

352
Specify your training environment, you should specify if the training is on CPU or GPU.
Y
Yi Wang 已提交
353

354 355 356 357
```python
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
```
Y
Yi Wang 已提交
358

359
### Datafeeder Configuration
Y
Yi Wang 已提交
360

361 362
Next we define data feeders for test and train. The feeder reads a `buf_size` of data each time and feed them to the training/testing process.
`paddle.dataset.wmt14.train` will yield records during each pass, after shuffling, a batch input of `BATCH_SIZE` is generated for training.
363

364 365 366 367 368 369
```python
train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)
```
370

371
### Create Trainer
Y
Yi Wang 已提交
372

373
Create a trainer that takes `train_program` as input and specify optimizer function.
Y
Yi Wang 已提交
374

375 376 377 378 379 380 381
```python
is_sparse = False
trainer = fluid.Trainer(
        train_func=partial(train_program, is_sparse),
        place=place,
        optimizer_func=optimizer_func)
```
Y
Yi Wang 已提交
382

383
### Feeding Data
Y
Yi Wang 已提交
384

385
`feed_order` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `wmt14.train` corresponds to `src_word_id`.
Y
Yi Wang 已提交
386

387 388 389 390 391
```python
feed_order = [
        'src_word_id', 'target_language_word', 'target_language_next_word'
    ]
```
Y
Yi Wang 已提交
392

393
### Event Handler
Y
Yi Wang 已提交
394

395 396
Callback function `event_handler` will be called during training when a pre-defined event happens.
For example, we can check the cost by `trainer.test` when `EndStepEvent` occurs
Y
Yi Wang 已提交
397

398 399 400 401 402
```python
def event_handler(event):
    if isinstance(event, fluid.EndStepEvent):
        if event.step % 10 == 0:
            print('pass_id=' + str(event.epoch) + ' batch=' + str(event.step))
Y
Yi Wang 已提交
403

404 405 406
        if event.step == 20:
            trainer.stop()
```
Y
Yi Wang 已提交
407

Y
Yu Yang 已提交
408

409
### Training
Y
Yu Yang 已提交
410

411
Finally, we invoke `trainer.train` to start training with `num_epochs` and other parameters.
Y
Yu Yang 已提交
412

413 414
```python
EPOCH_NUM = 1
415

416 417 418 419 420 421
trainer.train(
        reader=train_reader,
        num_epochs=EPOCH_NUM,
        event_handler=event_handler,
        feed_order=feed_order)
```
Y
Yi Wang 已提交
422

423
## Inference
424

425
### Define the decode part
426

427
Use the `encoder` and `decoder` function we defined above to predict translation ids and scores.
428

429 430 431 432
```python
context = encoder(is_sparse)
translation_ids, translation_scores = decode(context, is_sparse)
```
Y
Yi Wang 已提交
433

434
### Define DataSet
Y
Yi Wang 已提交
435

436
We initialize ids and scores and create tensors for input. In this test we are using first record data from `wmt14.test` for inference. At the end we get src dict and target dict for printing out results later.
Y
Yi Wang 已提交
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
```python
init_ids_data = np.array([1 for _ in range(batch_size)], dtype='int64')
init_scores_data = np.array(
    [1. for _ in range(batch_size)], dtype='float32')
init_ids_data = init_ids_data.reshape((batch_size, 1))
init_scores_data = init_scores_data.reshape((batch_size, 1))
init_lod = [1] * batch_size
init_lod = [init_lod, init_lod]

init_ids = fluid.create_lod_tensor(init_ids_data, init_lod, place)
init_scores = fluid.create_lod_tensor(init_scores_data, init_lod, place)

test_data = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.wmt14.test(dict_size), buf_size=1000),
    batch_size=batch_size)

feed_order = ['src_word_id']
feed_list = [
    framework.default_main_program().global_block().var(var_name)
    for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)

src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
```
Y
Yi Wang 已提交
464

465
### Infer
Y
Yi Wang 已提交
466

467
We create `feed_dict` with all the inputs we need and run with `executor` to get predicted results id and corresponding scores.
Y
Yi Wang 已提交
468

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
```python
exe = Executor(place)
exe.run(framework.default_startup_program())

for data in test_data():
    feed_data = map(lambda x: [x[0]], data)
    feed_dict = feeder.feed(feed_data)
    feed_dict['init_ids'] = init_ids
    feed_dict['init_scores'] = init_scores

    results = exe.run(
        framework.default_main_program(),
        feed=feed_dict,
        fetch_list=[translation_ids, translation_scores],
        return_numpy=False)

    result_ids = np.array(results[0])
    result_scores = np.array(results[1])

    print("Original sentence:")
489 490 491 492 493 494 495
    print(" ".join([src_dict[w] for w in feed_data[0][0][1:-1]]))
    print("Translated score and sentence:")
    for i in xrange(beam_size):
        start_pos = result_ids_lod[1][i] + 1
        end_pos = result_ids_lod[1][i+1]
        print("%d\t%.4f\t%s\n" % (i+1, result_scores[end_pos-1],
                " ".join([trg_dict[w] for w in result_ids[start_pos:end_pos]])))
496 497 498

    break
```
Y
Yi Wang 已提交
499 500 501 502 503 504 505 506 507 508

## References

1. Koehn P. [Statistical machine translation](https://books.google.com.hk/books?id=4v_Cx1wIMLkC&printsec=frontcover&hl=zh-CN&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false)[M]. Cambridge University Press, 2009.
2. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](http://www.aclweb.org/anthology/D/D14/D14-1179.pdf)[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014: 1724-1734.
3. Chung J, Gulcehre C, Cho K H, et al. [Empirical evaluation of gated recurrent neural networks on sequence modeling](https://arxiv.org/abs/1412.3555)[J]. arXiv preprint arXiv:1412.3555, 2014.
4.  Bahdanau D, Cho K, Bengio Y. [Neural machine translation by jointly learning to align and translate](https://arxiv.org/abs/1409.0473)[C]//Proceedings of ICLR 2015, 2015.
5. Papineni K, Roukos S, Ward T, et al. [BLEU: a method for automatic evaluation of machine translation](http://dl.acm.org/citation.cfm?id=1073135)[C]//Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics, 2002: 311-318.

<br/>
L
Luo Tao 已提交
509
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.