train.py 8.3 KB
Newer Older
L
liaogang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

W
Wang,Jeff 已提交
15
from __future__ import print_function
L
liaogang 已提交
16

17
import os
u010070587's avatar
u010070587 已提交
18
import argparse
W
Wang,Jeff 已提交
19 20 21 22
import paddle
import paddle.fluid as fluid
import numpy
import sys
L
liaogang 已提交
23 24
from vgg import vgg_bn_drop
from resnet import resnet_cifar10
L
liaogang 已提交
25 26


u010070587's avatar
u010070587 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40
def parse_args():
    parser = argparse.ArgumentParser("image_classification")
    parser.add_argument(
        '--enable_ce',
        action='store_true',
        help='If set, run the task with continuous evaluation logs.')
    parser.add_argument(
        '--use_gpu', type=bool, default=0, help='whether to use gpu')
    parser.add_argument(
        '--num_epochs', type=int, default=1, help='number of epoch')
    args = parser.parse_args()
    return args


W
Wang,Jeff 已提交
41
def inference_network():
W
Wang,Jeff 已提交
42
    # The image is 32 * 32 with RGB representation.
W
Wang,Jeff 已提交
43 44
    data_shape = [3, 32, 32]
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
W
Wang,Jeff 已提交
45

W
Wang,Jeff 已提交
46
    predict = resnet_cifar10(images, 32)
W
Wang,Jeff 已提交
47
    # predict = vgg_bn_drop(images) # un-comment to use vgg net
W
Wang,Jeff 已提交
48
    return predict
H
Helin Wang 已提交
49

L
liaogang 已提交
50

51
def train_network(predict):
W
Wang,Jeff 已提交
52 53 54 55 56
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(cost)
    accuracy = fluid.layers.accuracy(input=predict, label=label)
    return [avg_cost, accuracy]
L
liaogang 已提交
57 58


59 60 61 62
def optimizer_program():
    return fluid.optimizer.Adam(learning_rate=0.001)


63 64
def train(use_cuda, params_dirname):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
W
Wang,Jeff 已提交
65
    BATCH_SIZE = 128
L
liaogang 已提交
66

u010070587's avatar
u010070587 已提交
67 68 69 70 71 72 73 74 75 76 77 78
    if args.enable_ce:
        train_reader = paddle.batch(
            paddle.dataset.cifar.train10(), batch_size=BATCH_SIZE)
        test_reader = paddle.batch(
            paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
    else:
        test_reader = paddle.batch(
            paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.cifar.train10(), buf_size=128 * 100),
            batch_size=BATCH_SIZE)
L
liaogang 已提交
79

80
    feed_order = ['pixel', 'label']
W
Wang,Jeff 已提交
81

82
    main_program = fluid.default_main_program()
u010070587's avatar
u010070587 已提交
83 84 85 86 87
    start_program = fluid.default_startup_program()

    if args.enable_ce:
        main_program.random_seed = 90
        start_program.random_seed = 90
W
Wang,Jeff 已提交
88

89 90 91 92 93 94 95 96 97 98
    predict = inference_network()
    avg_cost, acc = train_network(predict)

    # Test program
    test_program = main_program.clone(for_test=True)
    optimizer = optimizer_program()
    optimizer.minimize(avg_cost)

    exe = fluid.Executor(place)

u010070587's avatar
u010070587 已提交
99
    EPOCH_NUM = args.num_epochs
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    # For training test cost
    def train_test(program, reader):
        count = 0
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder_test = fluid.DataFeeder(feed_list=feed_var_list, place=place)
        test_exe = fluid.Executor(place)
        accumulated = len([avg_cost, acc]) * [0]
        for tid, test_data in enumerate(reader()):
            avg_cost_np = test_exe.run(
                program=program,
                feed=feeder_test.feed(test_data),
                fetch_list=[avg_cost, acc])
            accumulated = [
                x[0] + x[1][0] for x in zip(accumulated, avg_cost_np)
            ]
            count += 1
        return [x / count for x in accumulated]

    # main train loop.
    def train_loop():
        feed_var_list_loop = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list=feed_var_list_loop, place=place)
u010070587's avatar
u010070587 已提交
127
        exe.run(start_program)
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

        step = 0
        for pass_id in range(EPOCH_NUM):
            for step_id, data_train in enumerate(train_reader()):
                avg_loss_value = exe.run(
                    main_program,
                    feed=feeder.feed(data_train),
                    fetch_list=[avg_cost, acc])
                if step_id % 100 == 0:
                    print("\nPass %d, Batch %d, Cost %f, Acc %f" % (
                        step_id, pass_id, avg_loss_value[0], avg_loss_value[1]))
                else:
                    sys.stdout.write('.')
                    sys.stdout.flush()
                step += 1

            avg_cost_test, accuracy_test = train_test(
                test_program, reader=test_reader)
146
            print('\nTest with Pass {0}, Loss {1:2.2}, Acc {2:2.2}'.format(
147
                pass_id, avg_cost_test, accuracy_test))
W
Wang,Jeff 已提交
148

149 150 151
            if params_dirname is not None:
                fluid.io.save_inference_model(params_dirname, ["pixel"],
                                              [predict], exe)
W
Wang,Jeff 已提交
152

u010070587's avatar
u010070587 已提交
153 154 155 156 157 158
            if args.enable_ce and pass_id == EPOCH_NUM - 1:
                print("kpis\ttrain_cost\t%f" % avg_loss_value[0])
                print("kpis\ttrain_acc\t%f" % avg_loss_value[1])
                print("kpis\ttest_cost\t%f" % avg_cost_test)
                print("kpis\ttest_acc\t%f" % accuracy_test)

159
    train_loop()
W
Wang,Jeff 已提交
160

L
liaogang 已提交
161

162
def infer(use_cuda, params_dirname=None):
163
    from PIL import Image
164 165 166
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    inference_scope = fluid.core.Scope()
167

168 169
    def load_image(infer_file):
        im = Image.open(infer_file)
170
        im = im.resize((32, 32), Image.ANTIALIAS)
W
Wang,Jeff 已提交
171

172
        im = numpy.array(im).astype(numpy.float32)
W
Wang,Jeff 已提交
173
        # The storage order of the loaded image is W(width),
Q
qingqing01 已提交
174 175
        # H(height), C(channel). PaddlePaddle requires
        # the CHW order, so transpose them.
Q
qingqing01 已提交
176
        im = im.transpose((2, 0, 1))  # CHW
177
        im = im / 255.0
W
Wang,Jeff 已提交
178 179

        # Add one dimension to mimic the list format.
W
Wang,Jeff 已提交
180
        im = numpy.expand_dims(im, axis=0)
181 182
        return im

L
liaogang 已提交
183
    cur_dir = os.path.dirname(os.path.realpath(__file__))
W
Wang,Jeff 已提交
184
    img = load_image(cur_dir + '/image/dog.png')
W
Wang,Jeff 已提交
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(params_dirname, exe)

        # The input's dimension of conv should be 4-D or 5-D.
        # Use inference_transpiler to speedup
        inference_transpiler_program = inference_program.clone()
        t = fluid.transpiler.InferenceTranspiler()
        t.transpile(inference_transpiler_program, place)

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(
            inference_program,
            feed={feed_target_names[0]: img},
            fetch_list=fetch_targets)

        transpiler_results = exe.run(
            inference_transpiler_program,
            feed={feed_target_names[0]: img},
            fetch_list=fetch_targets)

        assert len(results[0]) == len(transpiler_results[0])
        for i in range(len(results[0])):
            numpy.testing.assert_almost_equal(
                results[0][i], transpiler_results[0][i], decimal=5)

        # infer label
        label_list = [
            "airplane", "automobile", "bird", "cat", "deer", "dog", "frog",
            "horse", "ship", "truck"
        ]

        print("infer results: %s" % label_list[numpy.argmax(results[0])])
W
Wang,Jeff 已提交
224 225 226 227 228 229


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    save_path = "image_classification_resnet.inference.model"
230

231
    train(use_cuda=use_cuda, params_dirname=save_path)
Q
qingqing01 已提交
232

233
    infer(use_cuda=use_cuda, params_dirname=save_path)
234

L
liaogang 已提交
235 236

if __name__ == '__main__':
W
Wang,Jeff 已提交
237 238
    # For demo purpose, the training runs on CPU
    # Please change accordingly.
u010070587's avatar
u010070587 已提交
239 240 241
    args = parse_args()
    use_cuda = args.use_gpu
    main(use_cuda)