README.md 18.2 KB
Newer Older
C
choijulie 已提交
1
# Sentiment Analysis
L
Luo Tao 已提交
2

3
The source codes of this section is located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/06.understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
L
Luo Tao 已提交
4

C
choijulie 已提交
5
## Background
L
fix bug  
livc 已提交
6

C
choijulie 已提交
7
In natural language processing, sentiment analysis refers to determining the emotion expressed in a piece of text. The text can be a sentence, a paragraph, or a document. Emotion categorization can be binary -- positive/negative or happy/sad -- or in three classes -- positive/neutral/negative. Sentiment analysis is applicable in a wide range of services, such as e-commerce sites like Amazon and Taobao, hospitality services like Airbnb and hotels.com, and movie rating sites like Rotten Tomatoes and IMDB. It can be used to gauge from the reviews how the customers feel about the product. Table 1 illustrates an example of sentiment analysis in movie reviews:
W
wangxuguang 已提交
8

C
choijulie 已提交
9
| Movie Review       | Category  |
W
wangxuguang 已提交
10
| --------     | -----  |
C
choijulie 已提交
11 12 13 14
| Best movie of Xiaogang Feng in recent years!| Positive |
| Pretty bad. Feels like a tv-series from a local TV-channel     | Negative |
| Politically correct version of Taken ... and boring as Heck| Negative|
|delightful, mesmerizing, and completely unexpected. The plot is nicely designed.|Positive|
W
wangxuguang 已提交
15

C
choijulie 已提交
16
<p align="center">Table 1 Sentiment Analysis in Movie Reviews</p>
W
wangxuguang 已提交
17

X
Xi Chen 已提交
18
In natural language processing, sentiment analysis can be categorized as a **Text Classification problem**, i.e., to categorize a piece of text to a specific class. It involves two related tasks: text representation and classification. Before the emergence of deep learning techniques, the mainstream methods for text representation include BOW (*bag of words*) and topic modeling, while the latter contains SVM (*support vector machine*) and LR (*logistic regression*).
W
wangxuguang 已提交
19

X
Xi Chen 已提交
20
The BOW model does not capture all the information in a piece of text, as it ignores syntax and grammar and just treats the text as a set of words. For example, “this movie is extremely bad“ and “boring, dull, and empty work” describe very similar semantic meaning, yet their BOW representations have very little similarity. Furthermore, “the movie is bad“ and “the movie is not bad“ have high similarity with BOW features, but they express completely opposite semantics.
W
wangxuguang 已提交
21

M
Mimee 已提交
22
This chapter introduces a deep learning model that handles these issues in BOW. Our model embeds texts into a low-dimensional space and takes word order into consideration. It is an end-to-end framework and it has large performance improvement over traditional methods \[[1](#references)\].
L
fix bug  
livc 已提交
23

C
choijulie 已提交
24
## Model Overview
L
fix bug  
livc 已提交
25

C
choijulie 已提交
26
The model we used in this chapter uses **Convolutional Neural Networks** (**CNNs**) and **Recurrent Neural Networks** (**RNNs**) with some specific extensions.
W
wangxuguang 已提交
27

W
wangxuguang 已提交
28

C
choijulie 已提交
29
### Revisit to the Convolutional Neural Networks for Texts (CNN)
W
wangxuguang 已提交
30

31
The convolutional neural network for texts is introduced in chapter [recommender_system](https://github.com/PaddlePaddle/book/tree/develop/05.recommender_system), here is a brief overview.
L
fix bug  
livc 已提交
32

X
Xi Chen 已提交
33
CNN mainly contains convolution and pooling operation, with versatile combinations in various applications. We firstly apply the convolution operation: we apply the kernel in each window, extracting features. Convolving by the kernel at every window produces a feature map. Next, we apply *max pooling* over time to represent the whole sentence, which is the maximum element across the feature map. In real applications, we will apply multiple CNN kernels on the sentences. It can be implemented efficiently by concatenating the kernels together as a matrix. Also, we can use CNN kernels with different kernel size. Finally, concatenating the resulting features produces a fixed-length representation, which can be combined with a softmax to form the model for the sentiment analysis problem.
L
fix bug  
livc 已提交
34

M
Mimee 已提交
35
For short texts, the aforementioned CNN model can achieve very high accuracy \[[1](#references)\]. If we want to extract more abstract representations, we may apply a deeper CNN model \[[2](#references),[3](#references)\].
C
choijulie 已提交
36 37 38

### Recurrent Neural Network (RNN)

M
Mimee 已提交
39
RNN is an effective model for sequential data. In terms of computability, the RNN is Turing-complete \[[4](#references)\]. Since NLP is a classical problem of sequential data, the RNN, especially its variant LSTM\[[5](#references)\]), achieves state-of-the-art performance on various NLP tasks, such as language modeling, syntax parsing, POS-tagging, image captioning, dialog, machine translation, and so forth.
L
fix bug  
livc 已提交
40

41
<p align="center">
T
Tao Luo 已提交
42
<img src="image/rnn.png" width = "60%" align="center"/><br/>
C
choijulie 已提交
43
Figure 1. An illustration of an unfolded RNN in time.
44
</p>
L
fix bug  
livc 已提交
45

C
choijulie 已提交
46
As shown in Figure 1, we unfold an RNN: at the $t$-th time step, the network takes two inputs: the $t$-th input vector $\vec{x_t}$ and the latent state from the last time-step $\vec{h_{t-1}}$. From those, it computes the latent state of the current step $\vec{h_t}$. This process is repeated until all inputs are consumed. Denoting the RNN as function $f$, it can be formulated as follows:
W
wangxuguang 已提交
47

W
wanglun 已提交
48
$$\vec{h_t}=f(\vec{x_t},\vec{h_{t-1}})=\sigma(W_{xh}\vec{x_t}+W_{hh}\vec{h_{t-1}}+\vec{b_h})$$
W
wangxuguang 已提交
49

C
choijulie 已提交
50
where $W_{xh}$ is the weight matrix to feed into the latent layer; $W_{hh}$ is the latent-to-latent matrix; $b_h$ is the latent bias and $\sigma$ refers to the $sigmoid$ function.
51

X
Xi Chen 已提交
52
In NLP, words are often represented as one-hot vectors and then mapped to an embedding. The embedded feature goes through an RNN as input $x_t$ at every time step. Moreover, we can add other layers on top of RNN, such as a deep or stacked RNN. Finally, the last latent state may be used as a feature for sentence classification.
W
wangxuguang 已提交
53

C
choijulie 已提交
54
### Long-Short Term Memory (LSTM)
L
fix bug  
livc 已提交
55

M
Mimee 已提交
56
Training an RNN on long sequential data sometimes leads to the gradient vanishing or exploding\[[6](#references)\]. To solve this problem Hochreiter S, Schmidhuber J. (1997) proposed **Long Short Term Memory** (LSTM)\[[5](#references)\]).
W
wangxuguang 已提交
57

C
choijulie 已提交
58
Compared to the structure of a simple RNN, an LSTM includes memory cell $c$, input gate $i$, forget gate $f$ and output gate $o$. These gates and memory cells dramatically improve the ability for the network to handle long sequences. We can formulate the **LSTM-RNN**, denoted as a function $F$, as follows:
W
wangxuguang 已提交
59

W
wangxuguang 已提交
60
$$ h_t=F(x_t,h_{t-1})$$
W
wangxuguang 已提交
61

M
Mimee 已提交
62
$F$ contains following formulations\[[7](#references)\]
D
daming-lu 已提交
63 64 65 66 67
$$ i_t = \sigma{(W_{xi}x_t+W_{hi}h_{t-1}+W_{ci}c_{t-1}+b_i)} $$
$$ f_t = \sigma(W_{xf}x_t+W_{hf}h_{t-1}+W_{cf}c_{t-1}+b_f) $$
$$ c_t = f_t\odot c_{t-1}+i_t\odot tanh(W_{xc}x_t+W_{hc}h_{t-1}+b_c) $$
$$ o_t = \sigma(W_{xo}x_t+W_{ho}h_{t-1}+W_{co}c_{t}+b_o) $$
$$ h_t = o_t\odot tanh(c_t) $$
C
choijulie 已提交
68 69

In the equation,$i_t, f_t, c_t, o_t$ stand for input gate, forget gate, memory cell and output gate, respectively. $W$ and $b$ are model parameters, $\tanh$ is a hyperbolic tangent, and $\odot$ denotes an element-wise product operation. The input gate controls the magnitude of the new input into the memory cell $c$; the forget gate controls the memory propagated from the last time step; the output gate controls the magnitutde of the output. The three gates are computed similarly with different parameters, and they influence memory cell $c$ separately, as shown in Figure 2:
L
fix bug  
livc 已提交
70

W
wangxuguang 已提交
71
<p align="center">
C
choijulie 已提交
72 73
<img src="image/lstm_en.png" width = "65%" align="center"/><br/>
Figure 2. LSTM at time step $t$ [7].
W
wangxuguang 已提交
74
</p>
L
fix bug  
livc 已提交
75

X
Xi Chen 已提交
76
LSTM enhances the ability of considering long-term reliance, with the help of memory cell and gate. Similar structures are also proposed in Gated Recurrent Unit (GRU)\[[8](Reference)\] with a simpler design. **The structures are still similar to RNN, though with some modifications (As shown in Figure 2), i.e., latent status depends on input as well as the latent status of the last time step, and the process goes on recurrently until all inputs are consumed:**
W
wangxuguang 已提交
77

W
wangxuguang 已提交
78
$$ h_t=Recrurent(x_t,h_{t-1})$$
C
choijulie 已提交
79
where $Recrurent$ is a simple RNN, GRU or LSTM.
W
wangxuguang 已提交
80

C
choijulie 已提交
81
### Stacked Bidirectional LSTM
L
fix bug  
livc 已提交
82

M
Mimee 已提交
83
For vanilla LSTM, $h_t$ contains input information from previous time-step $1..t-1$ context. We can also apply an RNN with reverse-direction to take successive context $t+1…n$ into consideration. Combining constructing deep RNN (deeper RNN can contain more abstract and higher level semantic), we can design structures with deep stacked bidirectional LSTM to model sequential data\[[9](#references)\].
L
fix bug  
livc 已提交
84

C
choijulie 已提交
85
As shown in Figure 3 (3-layer RNN), odd/even layers are forward/reverse LSTM. Higher layers of LSTM take lower-layers LSTM as input, and the top-layer LSTM produces a fixed length vector by max-pooling (this representation considers contexts from previous and successive words for higher-level abstractions). Finally, we concatenate the output to a softmax layer for classification.
L
fix bug  
livc 已提交
86

87
<p align="center">
C
choijulie 已提交
88 89
<img src="image/stacked_lstm_en.png" width=450><br/>
Figure 3. Stacked Bidirectional LSTM for NLP modeling.
90
</p>
W
wangxuguang 已提交
91

C
choijulie 已提交
92
## Dataset
L
fix bug  
livc 已提交
93

X
Xi Chen 已提交
94
We use [IMDB](http://ai.stanford.edu/%7Eamaas/data/sentiment/) dataset for sentiment analysis in this tutorial, which consists of 50,000 movie reviews split evenly into a 25k train set and a 25k test set. In the labeled train/test sets, a negative review has a score <= 4 out of 10, and a positive review has a score >= 7 out of 10.
L
fix bug  
livc 已提交
95

C
choijulie 已提交
96 97 98 99 100 101 102 103 104
`paddle.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens`, and `wmt14`, etc. There's no need for us to manually download and preprocess IMDB.

After issuing a command `python train.py`, training will start immediately. The details will be unpacked by the following sessions to see how it works.


## Model Structure

### Initialize PaddlePaddle

S
sidgoyal78 已提交
105
We must import and initialize Paddle.
W
wangxuguang 已提交
106

H
hedaoyuan 已提交
107
```python
S
sidgoyal78 已提交
108 109
import paddle
import paddle.fluid as fluid
110
```
L
fix bug  
livc 已提交
111

C
choijulie 已提交
112
As alluded to in section [Model Overview](#model-overview), here we provide the implementations of both Text CNN and Stacked-bidirectional LSTM models.
L
fix bug  
livc 已提交
113

C
choijulie 已提交
114 115 116 117 118
### Text Convolution Neural Network (Text CNN)

We create a neural network `convolution_net` as the following snippet code.

Note: `paddle.networks.sequence_conv_pool` includes both convolution and pooling layer operations.
L
fix bug  
livc 已提交
119

H
hedaoyuan 已提交
120
```python
S
sidgoyal78 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
def convolution_net(data, input_dim, class_dim=2, emb_dim=128, hid_dim=128):
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=3,
        act="tanh",
        pool_type="sqrt")
    conv_4 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=4,
        act="tanh",
        pool_type="sqrt")
    prediction = fluid.layers.fc(input=[conv_3, conv_4],
                                 size=class_dim,
                                 act="softmax")
    return prediction

141
```
L
fix bug  
livc 已提交
142

C
choijulie 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
1. Define input data and its dimension

    Parameter `input_dim` denotes the dictionary size, and `class_dim` is the number of categories. In `convolution_net`, the input to the network is defined in `paddle.layer.data`.

1. Define Classifier

    The above Text CNN network extracts high-level features and maps them to a vector of the same size as the categories. `paddle.activation.Softmax` function or classifier is then used for calculating the probability of the sentence belonging to each category.

1. Define Loss Function

    In the context of supervised learning, labels of the training set are defined in `paddle.layer.data`, too. During training, cross-entropy is used as loss function in `paddle.layer.classification_cost` and as the output of the network; During testing, the outputs are the probabilities calculated in the classifier.

#### Stacked bidirectional LSTM

We create a neural network `stacked_lstm_net` as below.
L
fix bug  
livc 已提交
158

H
hedaoyuan 已提交
159
```python
S
sidgoyal78 已提交
160
def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num):
W
wangxuguang 已提交
161 162
    assert stacked_num % 2 == 1

S
sidgoyal78 已提交
163 164
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
165

S
sidgoyal78 已提交
166 167
    fc1 = fluid.layers.fc(input=emb, size=hid_dim)
    lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
W
wangxuguang 已提交
168 169

    inputs = [fc1, lstm1]
S
sidgoyal78 已提交
170

W
wangxuguang 已提交
171
    for i in range(2, stacked_num + 1):
S
sidgoyal78 已提交
172 173 174
        fc = fluid.layers.fc(input=inputs, size=hid_dim)
        lstm, cell = fluid.layers.dynamic_lstm(
            input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
W
wangxuguang 已提交
175 176
        inputs = [fc, lstm]

S
sidgoyal78 已提交
177 178 179 180 181 182 183 184
    fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
    lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')

    prediction = fluid.layers.fc(input=[fc_last, lstm_last],
                                 size=class_dim,
                                 act='softmax')
    return prediction

W
wangxuguang 已提交
185
```
L
fix bug  
livc 已提交
186

C
choijulie 已提交
187
1. Define input data and its dimension
L
fix bug  
livc 已提交
188

C
choijulie 已提交
189
    Parameter `input_dim` denotes the dictionary size, and `class_dim` is the number of categories. In `stacked_lstm_net`, the input to the network is defined in `paddle.layer.data`.
L
fix bug  
livc 已提交
190

C
choijulie 已提交
191 192 193 194 195 196 197
1. Define Classifier

    The above stacked bidirectional LSTM network extracts high-level features and maps them to a vector of the same size as the categories. `paddle.activation.Softmax` function or classifier is then used for calculating the probability of the sentence belonging to each category.

1. Define Loss Function

    In the context of supervised learning, labels of the training set are defined in `paddle.layer.data`, too. During training, cross-entropy is used as loss function in `paddle.layer.classification_cost` and as the output of the network; During testing, the outputs are the probabilities calculated in the classifier.
L
fix bug  
livc 已提交
198 199


C
choijulie 已提交
200
To reiterate, we can either invoke `convolution_net` or `stacked_lstm_net`.
L
fix bug  
livc 已提交
201

H
hedaoyuan 已提交
202
```python
S
sidgoyal78 已提交
203
TODO
204
```
L
fix bug  
livc 已提交
205

C
choijulie 已提交
206 207 208 209 210
## Model Training

### Define Parameters

First, we create the model parameters according to the previous model configuration `cost`.
L
fix bug  
livc 已提交
211

H
hedaoyuan 已提交
212
```python
C
choijulie 已提交
213 214
# create parameters
parameters = paddle.parameters.create(cost)
215
```
L
fix bug  
livc 已提交
216

C
choijulie 已提交
217 218 219 220
### Create Trainer

Before jumping into creating a training module, algorithm setting is also necessary.
Here we specified `Adam` optimization algorithm via `paddle.optimizer`.
L
fix bug  
livc 已提交
221

H
hedaoyuan 已提交
222
```python
C
choijulie 已提交
223 224 225 226 227 228 229 230 231 232
# create optimizer
adam_optimizer = paddle.optimizer.Adam(
    learning_rate=2e-3,
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(average_window=0.5))

# create trainer
trainer = paddle.trainer.SGD(cost=cost,
                                parameters=parameters,
                                update_equation=adam_optimizer)
233
```
L
fix bug  
livc 已提交
234

C
choijulie 已提交
235 236 237
### Training

`paddle.dataset.imdb.train()` will yield records during each pass, after shuffling, a batch input is generated for training.
L
fix bug  
livc 已提交
238

H
hedaoyuan 已提交
239
```python
C
choijulie 已提交
240 241 242 243 244 245 246
train_reader = paddle.batch(
    paddle.reader.shuffle(
        lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
    batch_size=100)

test_reader = paddle.batch(
    lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
247
```
C
choijulie 已提交
248 249 250

`feeding` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `paddle.dataset.imdb.train()` corresponds to `word` feature.

H
hedaoyuan 已提交
251
```python
C
choijulie 已提交
252
feeding = {'word': 0, 'label': 1}
H
hedaoyuan 已提交
253
```
C
choijulie 已提交
254 255 256

Callback function `event_handler` will be invoked to track training progress when a pre-defined event happens.

H
hedaoyuan 已提交
257
```python
C
choijulie 已提交
258 259 260 261 262 263 264 265 266
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "\nPass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
        else:
            sys.stdout.write('.')
            sys.stdout.flush()
    if isinstance(event, paddle.event.EndPass):
F
fengjiayi 已提交
267
        with open('./params_pass_%d.tar' % event.pass_id, 'w') as f:
268
            trainer.save_parameter_to_tar(f)
F
fengjiayi 已提交
269

C
choijulie 已提交
270 271
        result = trainer.test(reader=test_reader, feeding=feeding)
        print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
272 273
```

C
choijulie 已提交
274
Finally, we can invoke `trainer.train` to start training:
H
hedaoyuan 已提交
275 276

```python
C
choijulie 已提交
277 278 279 280 281
trainer.train(
    reader=train_reader,
    event_handler=event_handler,
    feeding=feeding,
    num_passes=10)
H
hedaoyuan 已提交
282 283
```

284

C
choijulie 已提交
285
## Conclusion
L
fix bug  
livc 已提交
286

C
choijulie 已提交
287
In this chapter, we use sentiment analysis as an example to introduce applying deep learning models on end-to-end short text classification, as well as how to use PaddlePaddle to implement the model. Meanwhile, we briefly introduce two models for text processing: CNN and RNN. In following chapters, we will see how these models can be applied in other tasks.
L
fix bug  
livc 已提交
288

M
Mimee 已提交
289
## References
L
fix bug  
livc 已提交
290

W
wangxuguang 已提交
291
1. Kim Y. [Convolutional neural networks for sentence classification](http://arxiv.org/pdf/1408.5882)[J]. arXiv preprint arXiv:1408.5882, 2014.
X
Xi Chen 已提交
292
2. Kalchbrenner N, Grefenstette E, Blunsom P. [A convolutional neural network for modeling sentences](http://arxiv.org/pdf/1404.2188.pdf?utm_medium=App.net&utm_source=PourOver)[J]. arXiv preprint arXiv:1404.2188, 2014.
W
wangxuguang 已提交
293 294 295 296 297 298 299
3. Yann N. Dauphin, et al. [Language Modeling with Gated Convolutional Networks](https://arxiv.org/pdf/1612.08083v1.pdf)[J] arXiv preprint arXiv:1612.08083, 2016.
4. Siegelmann H T, Sontag E D. [On the computational power of neural nets](http://research.cs.queensu.ca/home/akl/cisc879/papers/SELECTED_PAPERS_FROM_VARIOUS_SOURCES/05070215382317071.pdf)[C]//Proceedings of the fifth annual workshop on Computational learning theory. ACM, 1992: 440-449.
5. Hochreiter S, Schmidhuber J. [Long short-term memory](http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf)[J]. Neural computation, 1997, 9(8): 1735-1780.
6. Bengio Y, Simard P, Frasconi P. [Learning long-term dependencies with gradient descent is difficult](http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf)[J]. IEEE transactions on neural networks, 1994, 5(2): 157-166.
7. Graves A. [Generating sequences with recurrent neural networks](http://arxiv.org/pdf/1308.0850)[J]. arXiv preprint arXiv:1308.0850, 2013.
8. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](http://arxiv.org/pdf/1406.1078)[J]. arXiv preprint arXiv:1406.1078, 2014.
9. Zhou J, Xu W. [End-to-end learning of semantic role labeling using recurrent neural networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf)[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.
L
Luo Tao 已提交
300 301

<br/>
L
Luo Tao 已提交
302
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.