from .register import register from x2paddle.core.util import * def detectionoutput_shape(input_shape): return [[-1, 6]] def detectionoutput_layer(inputs, nms_param=None, background_label_id=0, share_location=True, keep_top_k=100, confidence_threshold=0.1, input_shape=None, name=None): if nms_param is None: nms_param = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0} mbox_conf_flatten = inputs[1] mbox_priorbox = inputs[2] mbox_priorbox_list = fluid.layers.split(mbox_priorbox, 2, dim=1) pb = mbox_priorbox_list[0] pbv = mbox_priorbox_list[1] pb = fluid.layers.reshape(x=pb, shape=[-1, 4]) pbv = fluid.layers.reshape(x=pbv, shape=[-1, 4]) mbox_loc = inputs[0] mbox_loc = fluid.layers.reshape(x=mbox_loc, shape=[-1, mbox_conf_flatten.shape[1], 4]) default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0} fields = ['eta', 'top_k', 'nms_threshold'] for f in default.keys(): if not nms_param.has_key(f): nms_param[f] = default[f] out = fluid.layers.detection_output( scores=mbox_conf_flatten, loc=mbox_loc, prior_box=pb, prior_box_var=pbv, background_label=background_label, nms_threshold=nms_param["nms_threshold"], nms_top_k=nms_param["top_k"], keep_top_k=keep_top_k, score_threshold=confidence_threshold, nms_eta=nms_param["eta"]) return out def detectionoutput_weights(name, data=None): weights_name = [] return weights_name register(kind='DetectionOutput', shape=detectionoutput_shape, layer=detectionoutput_layer, weights=detectionoutput_weights)