# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from x2paddle.optimizer.pattern_matcher import FuseBase from x2paddle.core.program import PaddleGraph, PaddleLayer from x2paddle.core.util import * class DygraphReshapeFuser(FuseBase): def __init__(self): super(DygraphReshapeFuser, self).__init__(graph_type="dygraph") def build_pattern(self): """ 描述需要替换的reshape图结构。 reshape层模式python实现代码示例: x165 = int(x164) x166 = [x158, x159, x165] x167 = fluid.layers.reshape(x=x157, shape=x166) """ def gen_name(id): return "x" + str(id) self.pattern.add_layer( "prim.int", inputs={"input": "reshape-input-0"}, outputs=[gen_name(0)]) self.pattern.add_layer( "prim.list", inputs={ "input0": "reshape-input-1", "input1": "reshape-input-2", "input2": gen_name(0) }, outputs=[gen_name(1)]) self.pattern.add_layer( "fluid.layers.reshape", inputs={"x": "reshape-input-3", "shape": gen_name(1)}, outputs=[gen_name(2)]) self.pattern.build(inputs={ "input-0": "reshape-input-0", "input-1": "reshape-input-1", "input-2": "reshape-input-2", "input-3": "reshape-input-3", }) def insert_new_layer(self, graph, parameters, matches): self.update_layer(matches) matches.pop(list(matches.keys())[1]) matches.pop(list(matches.keys())[1]) def update_layer(self, matches): layers_id = list(matches.keys()) layer = matches[layers_id[0]] int_input_name = layer.inputs["input"] output_name = layer.outputs[0] layer = matches[layers_id[1]] for key, input_name in layer.inputs.items(): if input_name == output_name: layer.inputs[key] = int_input_name