# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import numpy as np from collections import OrderedDict from x2paddle.optimizer.pattern_matcher import FuseBase from x2paddle.core.program import PaddleGraph, PaddleLayer from x2paddle.core.util import * class StaticPReLUFuser(FuseBase): def __init__(self): super(StaticPReLUFuser, self).__init__(graph_type="static") def build_pattern(self): """ 描述需要替换的prelu图结构。 prelu层模式python实现代码示例: conv4_alphas = paddle.static.create_parameter(dtype='float32', shape=[128], name='conv4_alphas', default_initializer=paddle.nn.initializer.Constant(value=0.0)) conv4_mul_1_y = paddle.full(dtype='float32', shape=[1], fill_value=0.5) conv4_Relu = paddle.nn.functional.relu(x=conv4_BiasAdd) conv4_Abs = paddle.abs(x=conv4_BiasAdd) conv4_sub = fluid.layers.elementwise_sub(x=conv4_BiasAdd, y=conv4_Abs) conv4_mul = paddle.multiply(x=conv4_alphas, y=conv4_sub) conv4_mul_1 = paddle.multiply(x=conv4_mul, y=conv4_mul_1_y) conv4_add = paddle.add(x=conv4_Relu, y=conv4_mul_1) """ def gen_name(id): return "x" + str(id) self.pattern.add_layer( "paddle.static.create_parameter", inputs={}, outputs=[gen_name(0)]) self.pattern.add_layer( "paddle.full", inputs={}, outputs=[gen_name(1)], shape=[1], fill_value=0.5) self.pattern.add_layer( "paddle.nn.functional.relu", inputs={"x": "prelu-input-0"}, outputs=[gen_name(2)]) self.pattern.add_layer( "paddle.abs", inputs={"x": "prelu-input-0"}, outputs=[gen_name(3)]) self.pattern.add_layer( "fluid.layers.elementwise_sub", inputs={"x": "prelu-input-0", "y": gen_name(3)}, outputs=[gen_name(4)]) self.pattern.add_layer( "paddle.multiply", inputs={"x": gen_name(0), "y": gen_name(4)}, outputs=[gen_name(5)]) self.pattern.add_layer( "paddle.multiply", inputs={"x": gen_name(5), "y": gen_name(1)}, outputs=[gen_name(6)]) self.pattern.add_layer( "paddle.add", inputs={"x": gen_name(2), "y": gen_name(6)}, outputs=[gen_name(7)]) self.pattern.build(inputs={"input-0": "prelu-input-0", }) def insert_new_layer(self, graph, parameters, matches): new_layers, last_layer_id = self.gen_new_layer(matches, parameters, graph) matches_copy = copy.deepcopy(matches) for layer_id, layer in matches_copy.items(): for i in range(4): if layer_id == new_layers[i].id: matches.pop(new_layers[i].id) prefix_layers = OrderedDict() mid_layers = OrderedDict() suffix_layers = OrderedDict() is_need_id = False for layer_id, layer in graph.layers.items(): if is_need_id: suffix_layers[layer_id] = layer else: if layer_id == last_layer_id: for i in range(4): mid_layers[new_layers[i].id] = new_layers[i] is_need_id = True prefix_layers[layer_id] = layer prefix_layers.update(mid_layers) prefix_layers.update(suffix_layers) graph.layers = prefix_layers def gen_new_layer(self, matches, parameters, graph): layer_id_list = list(matches.keys()) layer_id_list.sort(key = int) for layer_id, layer in matches.items(): if layer.kernel == "paddle.nn.functional.relu": input_name = layer.inputs["x"] if layer.kernel == "paddle.static.create_parameter": param_layer = layer param_name = layer.outputs[0] if layer.kernel == "paddle.add": output_name = layer.outputs[0] transpose0 = PaddleLayer( id=layer_id_list[-1] + "_1", kernel="paddle.transpose", inputs={"x": input_name}, outputs=["{}_transpose_for_prelu".format(input_name)], perm=[0, 3, 1, 2]) param = parameters[param_name] c = param.shape[0] prelu = PaddleLayer(id=layer_id_list[-1] + "_2", kernel="paddle.nn.functional.prelu", inputs={"x": "{}_transpose_for_prelu".format(input_name), "weight": param_name}, outputs=["{}_prelu".format(input_name)]) transpose1 = PaddleLayer( id=layer_id_list[-1] + "_3", kernel="paddle.transpose", inputs={"x": "{}_prelu".format(input_name)}, outputs=[output_name], perm=[0, 2, 3, 1]) return [param_layer, transpose0, prelu, transpose1], layer_id_list[-1]