from tensorflow.contrib.slim.nets import resnet_v1 as resnet_v1 import tensorflow.contrib.slim as slim import tensorflow as tf import sys def load_model(ckpt_file): img_size = resnet_v1.resnet_v1.default_image_size img = tf.placeholder( tf.float32, shape=[None, img_size, img_size, 3], name='inputs') with slim.arg_scope(resnet_v1.resnet_arg_scope()): net, endpoint = resnet_v1.resnet_v1_50( img, num_classes=None, is_training=False) sess = tf.Session() load_model = tf.contrib.slim.assign_from_checkpoint_fn( ckpt_file, tf.contrib.slim.get_model_variables("resnet_v1_50")) load_model(sess) return sess def save_checkpoint(sess, save_dir): saver = tf.train.Saver() saver.save(sess, save_dir + "/resnet") if __name__ == "__main__": ckpt_file = sys.argv[1] save_dir = sys.argv[2] sess = load_model(ckpt_file) save_checkpoint(sess, save_dir)