# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from x2paddle.optimizer.pattern_matcher import FuseBase from x2paddle.core.program import PaddleGraph, PaddleLayer from x2paddle.core.util import * class FcFuser(FuseBase): def __init__(self): self.linear_index = 0 super(FcFuser, self).__init__(graph_type="dygraph") def build_pattern(self): """ 描述需要替换的fc图结构。 fc层模式python实现代码示例: x131 = 2 x133 = x128.shape x133 = len(x133) x134 = x133 == x131 if x134 : classifier_6_weight = self.classifier_6_weight x136 = fluid.layers.transpose(x=classifier_6_weight, perm=[1, 0]) classifier_6_bias = self.classifier_6_bias x137 = paddle.addmm(input=classifier_6_bias, x=x128, y=x136, beta=1, alpha=1) x135 = x137 else: classifier_6_weight = self.classifier_6_weight x138 = fluid.layers.transpose(x=classifier_6_weight, perm=[1, 0]) x139 = fluid.layers.matmul(x=x128, y=x138) classifier_6_bias = self.classifier_6_bias x140 = x139 + 1 * classifier_6_bias x135 = x140 """ def gen_name(id): return "x" + str(id) self.pattern.add_layer( "prim.constant", inputs={}, outputs=[gen_name(0)], value=2) self.pattern.add_layer( "prim.constant", inputs={}, outputs=[gen_name(1)], value=1) self.pattern.add_layer( "prim.shape", inputs={'input': "fc-input-0"}, outputs=[gen_name(2)]) self.pattern.add_layer( "prim.len", inputs={'input': gen_name(2)}, outputs=[gen_name(2)]) self.pattern.add_layer( "prim.eq", inputs={"eq0": gen_name(2), "eq1": gen_name(0)}, outputs=[gen_name(3)]) self.pattern.add_layer("prim.if", {'input': gen_name(3)}, [gen_name(4)]) self.pattern.outputs.append(gen_name(4)) if_layer1 = self.pattern.layers[list(self.pattern.layers.keys())[-1]] pattern_block0 = PaddleGraph(if_layer1, graph_type="dygraph") pattern_block0.add_layer( "fluid.dygraph.base.to_variable", inputs={}, outputs=[gen_name(5)], value="params[{}]".format(string(gen_name(5)))) pattern_block0.add_layer( "fluid.layers.transpose", inputs={"x": gen_name(5)}, outputs=[gen_name(6)], perm=[1, 0]) pattern_block0.add_layer( "fluid.dygraph.base.to_variable", inputs={}, outputs=[gen_name(7)], value="params[{}]".format(string(gen_name(7)))) pattern_block0.add_layer( "paddle.addmm", inputs={"input": gen_name(7), "x": "fc-input-0", "y": gen_name(6)}, outputs=[gen_name(8)], beta=1, alpha=1) if_layer1.inputs["input-0"] = "fc-input-0" self.pattern.inputs.append("fc-input-0") pattern_block0.add_layer( "prim.equal", inputs={'input': gen_name(8)}, outputs=[gen_name(4)]) if_layer1.add_block(pattern_block0) pattern_block1 = PaddleGraph(if_layer1, graph_type="dygraph") pattern_block1.add_layer( "fluid.dygraph.base.to_variable", inputs={}, outputs=[gen_name(5)], value="params[{}]".format(string(gen_name(5)))) pattern_block1.add_layer( "fluid.layers.transpose", inputs={"x": gen_name(5)}, outputs=[gen_name(6)], perm=[1, 0]) pattern_block1.add_layer( "fluid.layers.matmul", inputs={"x": "fc-input-0", "y": gen_name(6)}, outputs=[gen_name(9)]) if_layer1.inputs["input-1"] = "fc-input-0" pattern_block1.add_layer( "fluid.dygraph.base.to_variable", inputs={}, outputs=[gen_name(12)], value="params[{}]".format(string(gen_name(12)))) pattern_block1.add_layer( "prim.add_", inputs={"x": gen_name(9), "y": gen_name(12)}, outputs=[gen_name(13)], alpha=1) pattern_block1.add_layer( "prim.equal", inputs={'input': gen_name(13)}, outputs=[gen_name(4)]) if_layer1.add_block(pattern_block1) self.pattern.build(inputs={"input-0": "fc-input-0"}) def insert_new_layer(self, graph, parameters, matches): new_layer = self.gen_new_layer(parameters, matches) new_layer_id = list(matches.keys())[0] graph.layers[new_layer_id] = new_layer matches.pop(new_layer_id) def gen_new_layer(self, parameters, matches): layers_id = list(matches.keys()) layer = matches[layers_id[2]] input_name = layer.inputs["input"] layer = matches[layers_id[5]] output_name = layer.outputs[0] layer = matches[layers_id[6]] weight_name = layer.attrs["value"][8:-2] layer = matches[layers_id[8]] bias_name = layer.attrs["value"][8:-2] attrs = dict() attrs["input_dim"] = parameters[weight_name].shape[1] attrs["output_dim"] = parameters[weight_name].shape[0] linear_name = "linear{}".format(self.linear_index) self.linear_index += 1 parameters["{}.weight".format(linear_name)] = parameters[ weight_name].transpose((1, 0)) parameters["{}.bias".format(linear_name)] = np.squeeze(parameters[ bias_name]) new_layer = PaddleLayer( layers_id[0], "paddle.nn.Linear", inputs={"input": input_name}, outputs=[linear_name, output_name], **attrs) return new_layer