# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import numbers import numpy as np from x2paddle.core.op_mapper import OpMapper from x2paddle.core.util import * from x2paddle.core.program import PaddleGraph from x2paddle.decoder.caffe_decoder import CaffeGraphNode def _adjust_parameters(node): data = node.data # When using the protobuf-backend, each parameter initially has four dimensions. # In certain cases (like FC layers), we want to eliminate the singleton dimensions. # This implementation takes care of the common cases. However, it does leave the # potential for future issues. # The Caffe-backend does not suffer from this problem. data = list(data) squeeze_indices = [1] # Squeeze biases. if node.layer_type == 'InnerProduct': squeeze_indices.append(0) # Squeeze FC. for idx in squeeze_indices: if idx >= len(data): continue d = data[idx] assert len( d.shape ) == 4, 'invalid shape[%s] from caffe when adjust_parameters' % ( str(d.shape)) shape_old = d.shape sq_axis = None if idx == 0: sq_axis = (0, 1) elif idx == 1: sq_axis = (0, 1, 2) else: continue data[idx] = np.squeeze(d, axis=sq_axis) shape_new = data[idx].shape return data def _get_kernel_parameters(kind, params): assert kind in ["Convolution", "Pooling", "Deconvolution", "ConvolutionDepthwise"] [k_h, k_w] = [1, 1] if isinstance(params.kernel_size, numbers.Number): [k_h, k_w] = [params.kernel_size] * 2 elif len(params.kernel_size) > 0: k_h = params.kernel_h if params.kernel_h > 0 else params.kernel_size[ 0] k_w = params.kernel_w if params.kernel_w > 0 else params.kernel_size[ len(params.kernel_size) - 1] elif params.kernel_h > 0 or params.kernel_w > 0: k_h = params.kernel_h k_w = params.kernel_w [s_h, s_w] = [1, 1] if isinstance(params.stride, numbers.Number): [s_h, s_w] = [params.stride] * 2 elif len(params.stride) > 0: s_h = params.stride_h if params.stride_h > 0 else params.stride[0] s_w = params.stride_w if params.stride_w > 0 else params.stride[len( params.stride) - 1] elif params.stride_h > 0 or params.stride_w > 0: s_h = params.stride_h s_w = params.stride_w [p_h, p_w] = [0, 0] if isinstance(params.pad, numbers.Number): [p_h, p_w] = [params.pad] * 2 elif len(params.pad) > 0: p_h = params.pad_h if params.pad_h > 0 else params.pad[0] p_w = params.pad_w if params.pad_w > 0 else params.pad[len( params.pad) - 1] elif params.pad_h > 0 or params.pad_w > 0: p_h = params.pad_h p_w = params.pad_w dila_h = dila_w = 1 group = 1 c_o = 1 if kind in ["Convolution", "Deconvolution", "ConvolutionDepthwise"]: if kind in ["Convolution", "Deconvolution"]: c_o = params.num_output dila_len = len(params.dilation) if dila_len == 2: dila_h = params.dilation[0] dila_w = params.dilation[1] elif dila_len == 1: dila_h = dila_w = params.dilation[0] else: assert dila_len == 0, "invalid length[%s] of dilation in convolution" % ( dila_len) if kind in ['Convolution', 'Deconvolution']: group = params.group kernel = [k_h, k_w] stride = [s_h, s_w] pad = [p_h, p_w] dilation = [dila_h, dila_w] return c_o, kernel, stride, pad, dilation, group class CaffeOpMapper(OpMapper): directly_map_ops = { 'Sigmoid': ['paddle.nn.layer.Sigmoid'], 'TanH': ['paddle.nn.Tanh'], } def __init__(self, decoder): super(CaffeOpMapper, self).__init__() self.graph = decoder.caffe_graph if not self.op_checker(): raise Exception("Model is not supported yet.") self.params = dict() self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="dygraph", source_type="caffe") self.paddle_graph.outputs = self.graph.output_nodes self.input_index = 0 self.inputs_info = {} self.nn_name2id = {} print("Total nodes: {}".format( sum([ isinstance(node, CaffeGraphNode) for name, node in self.graph.node_map.items() ]))) print("Nodes converting ...") for i, node_name in enumerate(self.graph.topo_sort): sys.stderr.write("\rConverting node {} ... ".format(i + 1)) node = self.graph.get_node(node_name) op = node.layer_type if hasattr(self, op): func = getattr(self, op) func(node) elif op in self.directly_map_ops: self.directly_map(node) print("\nNodes converted.") self.paddle_graph.set_name(self.graph.graph_name) self.paddle_graph.set_parameters(self.params) self.paddle_graph.set_inputs_info(self.inputs_info) def op_checker(self): unsupported_ops = set() for node_name in self.graph.topo_sort: node = self.graph.get_node(node_name) op = node.layer_type if not hasattr(self, op) and op not in self.directly_map_ops: unsupported_ops.add(op) if len(unsupported_ops) == 0: return True else: if len(unsupported_ops) > 0: print("\n========= {} OPs are not supported yet ===========".format( len(unsupported_ops))) for op in unsupported_ops: print("========== {} ============".format(op)) return False def directly_map(self, node): inputs = node.layer.input assert len(inputs) == 1, 'directly_map error with multi inputs' op_info = self.directly_map_ops[node.layer_type] input = self.graph.get_input_node(node, 0) paddle_op = op_info[0] if paddle_op.startswith("paddle.nn"): op_name = paddle_op[10:].lower() op_name = name_generator(op_name, self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] self.paddle_graph.add_layer( kernel=paddle_op, inputs={"x": input.name}, outputs=layer_outputs) else: self.paddle_graph.add_layer( kernel=paddle_op, inputs={"x": input.name}, outputs=[node.name]) def Input(self, node): self.paddle_graph.add_layer( "paddle.to_tensor", inputs={}, outputs=[node.layer_name], data="x{}".format(self.input_index)) shape = list(node.layer.input_param.shape[0].dim)[1:] self.inputs_info["x{}".format(self.input_index)] = [[-1] + shape, "float32"] self.input_index += 1 def Convolution(self, node): conv2d_name = name_generator("conv", self.nn_name2id) output_name = node.layer_name layer_outputs = [conv2d_name, output_name] data = node.data params = node.layer.convolution_param out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters( node.layer_type, params) if data is None: data = [] print( "The parameter of {} (type is {}) is not set. So we set the parameters as 0" .format(node.layer_name, node.layer_type)) data.append( np.zeros([out_channel, node.in_shapes[0][1], kernel[0], kernel[1]]).astype( 'float32')) data.append(np.zeros([out_channel, ]).astype('float32')) else: data = _adjust_parameters(node) self.params[conv2d_name + ".weight"] = data[0] if len(data) == 2: self.params[conv2d_name + ".bias"] = data[1] assert len(node.inputs ) == 1, "The count of Convolution node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) layer_attrs = { "in_channels": node.in_shapes[0][1], "out_channels": out_channel, "kernel_size": kernel, "stride": stride, "padding": pad, "dilation": dilation, "groups": group } if len(data) == 1: layer_attrs["bias_attr"] = False self.paddle_graph.add_layer( "paddle.nn.Conv2D", inputs={"input": input.name}, outputs=layer_outputs, **layer_attrs) def DepthwiseConvolution(self, node): node.layer_type = "ConvolutionDepthwise" self.ConvolutionDepthwise(node) def Deconvolution(self, node): conv2d_name = name_generator("conv", self.nn_name2id) output_name = node.layer_name layer_outputs = [conv2d_name, output_name] data = node.data params = node.layer.convolution_param out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters( node.layer_type, params) if data is None: data = [] print( "The parameter of {} (type is {}) is not set. So we set the parameters as 0" .format(node.layer_name, node.layer_type)) data.append( np.zeros([out_channel, node.in_shapes[0][1], kernel[0], kernel[1]]).astype( 'float32')) data.append(np.zeros([out_channel, ]).astype('float32')) else: data = _adjust_parameters(node) self.params[conv2d_name + ".weight"] = data[0] if len(data) == 2: self.params[conv2d_name + ".bias"] = data[1] assert len(node.inputs ) == 1, "The count of Deconvolution node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) layer_attrs = { "in_channels": node.in_shapes[0][1], "out_channels": out_channel, "kernel_size": kernel, "stride": stride, "padding": pad, "dilation": dilation, "groups": group } if len(data) == 1: layer_attrs["bias_attr"] = False self.paddle_graph.add_layer( "paddle.nn.Conv2DTranspose", inputs={"input": input.name}, outputs=layer_outputs, **layer_attrs) def ConvolutionDepthwise(self, node): conv2d_name = name_generator("conv", self.nn_name2id) output_name = node.layer_name layer_outputs = [conv2d_name, output_name] data = node.data params = node.layer.convolution_param out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters( node.layer_type, params) out_channel = params.num_output if params.num_output is not None else node.in_shapes[0][1] in_channel = node.in_shapes[0][1] group = int(in_channel / (in_channel / out_channel)) if in_channel > out_channel else int(in_channel / (out_channel / in_channel)) if data is None: data = [] print( "The parameter of {} (type is {}) is not set. So we set the parameters as 0" .format(node.layer_name, node.layer_type)) data.append( np.zeros([out_channel, node.in_shapes[0][1], kernel[0], kernel[1]]).astype( 'float32')) data.append(np.zeros([out_channel, ]).astype('float32')) else: data = _adjust_parameters(node) self.params[conv2d_name + ".weight"] = data[0] if len(data) == 2: self.params[conv2d_name + ".bias"] = data[1] assert len(node.inputs ) == 1, "The count of Deconvolution node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) layer_attrs = { "in_channels": in_channel, "out_channels": out_channel, "kernel_size": kernel, "stride": stride, "padding": pad, "dilation": dilation, "groups": group } if len(data) == 1: layer_attrs["bias_attr"] = False self.paddle_graph.add_layer( "paddle.nn.Conv2D", inputs={"input": input.name}, outputs=layer_outputs, **layer_attrs) def Pooling(self, node): pool2d_name = name_generator("pool", self.nn_name2id) output_name = node.layer_name layer_outputs = [pool2d_name, output_name] params = node.layer.pooling_param ceil_mode = getattr(params, "ceil_mod", True) global_pool = getattr(params, "global_pooling", False) kernel_default = [1, 1] channel, kernel, stride, pad, dilation, group = _get_kernel_parameters( node.layer_type, params) if params.pool == 0: pool_type = "max" else: pool_type = "avg" assert len( node.inputs) == 1, "The count of Pooling node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) if global_pool: if kernel[0] == 0: kernel = [1, 1] if params.pool == 0: self.paddle_graph.add_layer( "paddle.nn.AdaptiveMaxPool2D", inputs={"input": input.name}, outputs=layer_outputs, output_size=kernel) else: self.paddle_graph.add_layer( "paddle.nn.AdaptiveAvgPool2D", inputs={"input": input.name}, outputs=layer_outputs, output_size=kernel) else: layer_attrs = { 'kernel_size': kernel, 'stride': stride, 'padding': pad, 'ceil_mode': ceil_mode, } if params.pool == 0: self.paddle_graph.add_layer( "paddle.nn.MaxPool2D", inputs={"input": input.name}, outputs=layer_outputs, **layer_attrs) else: self.paddle_graph.add_layer( "paddle.nn.AvgPool2D", inputs={"input": input.name}, outputs=layer_outputs, **layer_attrs) def LRN(self, node): lrn_name = name_generator("lrn", self.nn_name2id) output_name = node.layer_name layer_outputs = [lrn_name, output_name] assert len(node.inputs) == 1, "The count of LRN node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.lrn_param assert params.local_size % 2 == 1 alpha = params.alpha / float(params.local_size) layer_attrs = { "size": params.local_size, "k": params.k, "alpha": alpha, "beta": params.beta } self.paddle_graph.add_layer( "paddle.nn.LocalResponseNorm", inputs={"input": input.name}, outputs=layer_outputs, **layer_attrs) def InnerProduct(self, node): linear_name = name_generator("linear", self.nn_name2id) output_name = node.layer_name layer_outputs = [linear_name, output_name] data = node.data input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.inner_product_param if data is None: print( "The parameter of {} (type is {}) is not set. So we set the parameters as 0." .format(node.layer_name, node.layer_type)) data = [] data.append( np.zeros([node.in_shapes[0][1], params.num_output]).astype("float32").astype( "float32")) data.append( np.zeros([params.num_output]).astype("float32").astype("float32")) else: data = _adjust_parameters(node) # Reshape the parameters to Paddle's ordering transpose_order = (1, 0) w = data[0] fc_shape = w.shape output_channels = fc_shape[0] w = w.reshape((output_channels, -1)) w = w.transpose(transpose_order) data[0] = w self.params[linear_name + ".weight"] = data[0] if len(data) == 2: self.params[linear_name + ".bias"] = data[1] assert len(node.inputs ) == 1, "The count of InnerProduct node\'s input is not 1." assert params.axis == 1 assert params.bias_term == True layer_attrs = { "in_features": data[0].shape[0], "out_features": params.num_output } if len(data) == 1: layer_attrs["bias"] = False if node.in_shapes[0][-1] != data[0].shape[0]: self.paddle_graph.add_layer( "paddle.reshape", inputs={"x": input.name}, outputs=[output_name], shape=[-1, data[0].shape[0]]) self.paddle_graph.add_layer( "paddle.nn.Linear", inputs={"input": output_name}, outputs=layer_outputs, **layer_attrs) else: self.paddle_graph.add_layer( "paddle.nn.Linear", inputs={"input": input.name}, outputs=layer_outputs, **layer_attrs) def AbsVal(self, node): assert len( node.inputs ) >= 1, "The count of AbsVal node\'s input is not more than 1." input = self.graph.get_input_node(node, idx=0, copy=True) self.paddle_graph.add_layer( "paddle.abs", inputs={"input": input.name}, outputs=[node.layer_name]) def Softmax(self, node): softmax_name = name_generator("softmax", self.nn_name2id) output_name = node.layer_name layer_outputs = [softmax_name, output_name] assert len( node.inputs) == 1, "The count of Softmax node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.softmax_param axis = params.axis shape = node.in_shapes[0] dims = len(shape) axis = axis + dims if axis < 0 else axis layer_attrs = {'axis': axis} self.paddle_graph.add_layer( "paddle.nn.Softmax", inputs={"input": input.name}, outputs=layer_outputs, **layer_attrs) def Slice(self, node): assert len( node.inputs) == 1, "The count of Slice node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) top_len = len(node.layer.top) params = node.layer.slice_param axis = params.axis slice_dim = params.slice_dim if slice_dim != 1 and axis == 1: axis = slice_dim output_shape = node.out_shapes sections_list = list() outputs_list = list() for i, s in enumerate(output_shape): sections_list.append(s[axis]) outputs_list.append("{}_p{}".format(node.layer_name, i)) layer_attrs = { 'num_or_sections': sections_list, 'axis': axis, } self.paddle_graph.add_layer( "paddle.split", inputs={"x": input.name}, outputs=outputs_list, **layer_attrs) def Concat(self, node): assert len( node.inputs ) >= 1, "The count of Concat node\'s input is not more than 1." inputs_list = list() for i in range(len(node.inputs)): input = self.graph.get_input_node(node, idx=i, copy=True) inputs_list.append(input.name) params = node.layer.concat_param axis = params.axis layer_attrs = {'axis': axis} self.paddle_graph.add_layer( "paddle.concat", inputs={"x": inputs_list}, outputs=[node.layer_name], **layer_attrs) def ReLU(self, node): relu_name = name_generator("relu", self.nn_name2id) output_name = node.layer_name layer_outputs = [relu_name, output_name] assert len( node.inputs) == 1, "The count of RelU node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.relu_param if params.HasField('negative_slope') and params.negative_slope != 0: negative_slope = float(params.negative_slope) layer_attrs = {'alpha': negative_slope} self.paddle_graph.add_layer( "paddle.nn.LeakyReLU", inputs={"input": input.name}, outputs=layer_outputs, **layer_attrs) else: self.paddle_graph.add_layer( "paddle.nn.ReLU", inputs={"input": input.name}, outputs=layer_outputs) def PReLU(self, node): prelu_name = name_generator("prelu", self.nn_name2id) output_name = node.layer_name layer_outputs = [prelu_name, output_name] assert len( node.inputs) == 1, "The count of PReLU node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.prelu_param mode_bool = params.channel_shared output_shape = node.out_shapes[0] if mode_bool: num_parameters = 1 else: num_parameters = output_shape[1] data = node.data self.params[prelu_name + '._weight'] = np.squeeze(data[0]) assert data is not None, "The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.".format( node.layer_name, node.layer_type) self.paddle_graph.add_layer( "paddle.nn.PReLU", inputs={"input": input.name}, outputs=layer_outputs, num_parameters=num_parameters) def Eltwise(self, node): assert len( node.inputs) == 2, "The count of Eltwise node\'s input is not 2." params = node.layer.eltwise_param mode = params.operation inputs = [] input0 = self.graph.get_input_node(node, idx=0, copy=True) input1 = self.graph.get_input_node(node, idx=1, copy=True) input0_name = input0.name input1_name = input1.name if mode == 0: inputs_dict = {} inputs_dict['x'] = input0_name inputs_dict['y'] = input1_name self.paddle_graph.add_layer( "paddle.multiply", inputs=inputs_dict, outputs=[node.layer_name]) elif mode == 1: if hasattr(params, 'coeff') and len(params.coeff) == 2: coeff = params.coeff self.paddle_graph.add_layer( "paddle.scale", inputs={"x": input0_name}, outputs=[node.layer_name + '_mul0'], scale=coeff[0]) self.paddle_graph.add_layer( "paddle.scale", inputs={"x": input1_name}, outputs=[node.layer_name + '_mul1'], scale=coeff[2]) inputs_dict = {} inputs_dict['x'] = node.layer_name + '_mul0' inputs_dict['y'] = node.layer_name + '_mul1' self.paddle_graph.add_layer( "paddle.add", inputs=inputs_dict, outputs=[node.layer_name]) else: inputs_dict = {} inputs_dict['x'] = input0_name inputs_dict['y'] = input1_name self.paddle_graph.add_layer( "paddle.add", inputs=inputs_dict, outputs=[node.layer_name]) else: inputs_dict = {} inputs_dict['x'] = input0_name inputs_dict['y'] = input1_name self.paddle_graph.add_layer( "paddle.max", inputs=inputs_dict, outputs=[node.layer_name]) def BatchNorm(self, node): batchnorm_name = name_generator("batchnorm", self.nn_name2id) output_name = node.layer_name layer_outputs = [batchnorm_name, output_name] assert len( node.inputs) == 1, "The count of BatchNorm node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.batch_norm_param if hasattr(params, "eps"): eps = params.eps else: eps = 1e-5 if node.data is None or len(node.data) != 3: print( "The parameter of {} (type is {}) is not set. So we set the parameters as 0" .format(node.layer_name, node.layer_type)) mean = np.zeros([node.in_shapes[0][1], ]).astype("float32") variance = np.zeros([node.in_shapes[0][1], ]).astype("float32") scale = 0 else: node.data = [np.squeeze(i).astype("float32") for i in node.data] mean, variance, scale = node.data # Prescale the stats scaling_factor = 1.0 / scale if scale != 0 else 0 mean *= scaling_factor variance *= scaling_factor self.params[batchnorm_name + "._mean"] = mean self.params[batchnorm_name + '._variance'] = variance layer_attrs = { "num_features": node.in_shapes[0][1], "epsilon": eps, "weight_attr": False, "bias_attr": False, } self.paddle_graph.add_layer( "paddle.nn.BatchNorm2D", inputs={"input": input.name}, outputs=layer_outputs, **layer_attrs) def Scale(self, node): if node.data is None: print( "The parameter of {} (type is {}) is not set. So we set the parameters as 0" .format(node.layer_name, node.layer_type)) self.params[node.layer_name + "_cparam1"] = np.zeros([ node.in_shapes[0][1], ]).astype("float32") self.params[node.layer_name + "_cparam2"] = np.zeros([ node.in_shapes[0][1], ]).astype("float32") else: self.params[node.layer_name + "_cparam1"] = np.squeeze(node.data[ 0]).astype("float32") self.params[node.layer_name + "_cparam2"] = np.squeeze(node.data[ 1]).astype("float32") params = node.layer.scale_param axis = params.axis inputs = [] if len(node.inputs) == 2: input0 = self.graph.get_input_node(node, idx=0, copy=True) input1 = self.graph.get_input_node(node, idx=1, copy=True) input0_name = input0.name input1_name = input1.name inputs_dict = {} inputs_dict['x'] = input0_name inputs_dict['y'] = input1_name self.paddle_graph.add_layer( "paddle.multiply", inputs=inputs_dict, outputs=[node.layer_name + "_mul"], axis=1) else: self.paddle_graph.add_layer( "self.create_parameter", inputs={}, outputs=[node.layer_name + "_cparam1"], shape=self.params[node.layer_name + "_cparam1"].shape, attr=string(node.layer_name + "_cparam1")) input0 = self.graph.get_input_node(node, idx=0, copy=True) input0_name = input0.name inputs_dict = {} inputs_dict['x'] = input0_name inputs_dict['y'] = node.layer_name + "_cparam1" self.paddle_graph.add_layer( "paddle.multiply", inputs=inputs_dict, outputs=[node.layer_name + "_mul"], axis=axis) self.paddle_graph.add_layer( "self.create_parameter", inputs={}, outputs=[node.layer_name + "_cparam2"], shape=self.params[node.layer_name + "_cparam2"].shape, attr=string(node.layer_name + "_cparam2")) inputs_dict = {} inputs_dict['x'] = node.layer_name + "_mul" inputs_dict['y'] = node.layer_name + "_cparam2" output_shape = node.out_shapes[0] if axis == -1: self.paddle_graph.add_layer( "paddle.add", inputs=inputs_dict, outputs=[node.layer_name]) else: if axis < 0: axis = axis + len(output_shape) param2_shape = self.params[node.layer_name + "_cparam2"].shape param2_shape_len = len(param2_shape) diff_len = len(output_shape) - axis - param2_shape_len new_shape = list(param2_shape) + [1] * diff_len self.paddle_graph.add_layer( "paddle.reshape", inputs={"x": node.layer_name + "_cparam2"}, outputs=[node.layer_name + "_cparam2"], shape=new_shape) self.paddle_graph.add_layer( "paddle.add", inputs=inputs_dict, outputs=[node.layer_name]) def Reshape(self, node): input = self.graph.get_input_node(node, idx=0, copy=True) output_shape = node.out_shapes[0] self.paddle_graph.add_layer( "paddle.reshape", inputs={"x": input.name}, outputs=[node.layer_name], shape=output_shape) def ArgMax(self, node): assert len(node.inputs) == 1 and len( node.outputs ) == 1, "The count of ArgMax node\'s input and output is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) input_shape = node.in_shapes[0] params = node.layer.argmax_param out_max_val = params.out_max_val if hasattr(params, out_max_val) else False top_k = params.top_k if hasattr(params, top_k) else 1 axis = params.axis if hasattr(params, axis) else -1 if axis < 0: axis += len(input_shape) if out_max_val is True: self.paddle_graph.add_layer( "paddle.topk", inputs={"x": input.name}, outputs=[node.layer_name + "_topk_var", node.layer_name + "_index_var"], k=top_k) self.paddle_graph.add_layer( "paddle.cast", inputs={"x": node.layer_name + "_index_var"}, outputs=[node.layer_name + "_index_var"], dtype="{}_topk_var.dtype".format(node.layer_name)) self.paddle_graph.add_layer( "paddle.concat", inputs={"x": [node.layer_name + "_topk_var", node.layer_name + "_index_var"]}, outputs=[node.layer_name], axis=axis) else: self.paddle_graph.add_layer( "paddle.topk", inputs={"x": input.name}, outputs=["_", node.layer_name], k=top_k) def Axpy(self, node): assert len(node.inputs) == 1 and len( node.outputs ) == 1, "The count of Axpy node\'s input and output is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.axpy_param input0 = self.graph.get_input_node(node, idx=0, copy=True) input1 = self.graph.get_input_node(node, idx=1, copy=True) input2 = self.graph.get_input_node(node, idx=2, copy=True) input0_name = input0.name input1_name = input1.name input2_name = input2.name inputs_dict = {} inputs_dict['x'] = input1_name inputs_dict['y'] = input0_name self.paddle_graph.add_layer( "paddle.multiply", inputs=inputs_dict, outputs=[node.layer_name + "_mul"], axis=0) inputs_dict = {} inputs_dict['x'] = node.layer_name + "_mul" inputs_dict['y'] = input2_name self.paddle_graph.add_layer( "paddle.add", inputs=inputs_dict, outputs=[node.layer_name + "_mul"]) def Crop(self, node): assert len( node.inputs) == 2, "The count of Crop node\'s input is not 2." input = self.graph.get_input_node(node, idx=0, copy=True) example = self.graph.get_input_node(node, idx=1, copy=True) params = node.layer.crop_param axis = params.axis input_shape = node.in_shapes[0] if axis < 0: axis += len(input_shape) offset_real = [0] * len(input_shape) if hasattr(params, "offset") and len(params.offset) > 0: offset = list(params.offset) assert (len(input_shape) - axis ) == len(offset), "invalid offset[%s] in crop layer" % ( str(offset)) offset_real = [0] * axis + offset self.paddle_graph.add_layer( "paddle.crop", inputs={"x": input.name}, outputs=[node.layer_name], shape=node.in_shapes[1], offsets=list(offset_real)) def Flatten(self, node): assert len( node. inputs) == 1, "The count of DetectionOutput node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) self.paddle_graph.add_layer( "paddle.reshape", inputs={"x": input.name}, outputs=[node.layer_name], shape=node.out_shapes[0]) def Power(self, node): assert len( node.inputs) == 1, "The count of Permute node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.power_param layer_attrs = { 'scale': params.scale, 'bias': params.shift, 'bias_after_scale': True } self.paddle_graph.add_layer( "paddle.scale", inputs={"x": input.name}, outputs=[node.layer_name], **layer_attrs) self.paddle_graph.add_layer( "paddle.pow", inputs={"x": node.layer_name}, outputs=[node.layer_name], exponent=params.power) def Reduction(self, node): assert len( node.inputs) == 1, "The count of Reduction node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.reduction_param operation = params.operation axis = params.axis coeff = params.coeff assert operation >= 1 and operation <= 4, "reduction reduction [%s] error" % ( operation) input_len = len(node.in_shapes[0]) if axis < 0: axis += input_len + 1 dim = list(range(input_len)) # operation = SUM if operation == 1: layer_attrs = { "dim": dim[axis:], "keep_dim": False, } self.paddle_graph.add_layer( "paddle.sum", inputs={"input": input.name}, outputs=[node.layer_name], **layer_attrs) # operation = ASUM elif operation == 2: self.paddle_graph.add_layer( "paddle.abs", inputs={"x": input.name}, outputs=[node.layer_name]) layer_attrs = { "dim": dim[axis:], "keep_dim": False, } self.paddle_graph.add_layer( "paddle.sum", inputs={"input": node.layer_name}, outputs=[node.layer_name], **layer_attrs) # operation = SUMSQ elif operation == 3: self.paddle_graph.add_layer( "paddle.pow", inputs={"x": input.name}, outputs=[node.layer_name], exponent=2.0) layer_attrs = { "dim": dim[axis:], "keep_dim": False, } self.paddle_graph.add_layer( "paddle.sum", inputs={"input": node.layer_name}, outputs=[node.layer_name], **layer_attrs) # operation = MEAN else: layer_attrs = { "dim": dim[axis:], "keep_dim": False, } self.paddle_graph.add_layer( "paddle.mean", inputs={"input": input.name}, outputs=[node.layer_name], **layer_attrs) self.paddle_graph.add_layer( "paddle.scale", inputs={"x": node.layer_name}, outputs=[node.layer_name], scale=coeff) def DetectionOutput(self, node): detection_output_name = name_generator("detection_output", self.nn_name2id) output_name = node.layer_name layer_outputs = [detection_output_name, output_name] assert len( node.inputs) == 3, "The count of DetectionOutput node\'s input is not 3." inputs_dict = dict() for i in range(len(node.inputs)): input = self.graph.get_input_node(node, idx=i, copy=True) if i == 1: input = self.graph.get_input_node(node, idx=i, copy=True) while input is not None \ and input.layer_type != 'Softmax' \ and input.layer_type != 'Sigmoid': input = self.graph.get_input_node(input, idx=0, copy=True) assert input is not None, 'This kind of DetectionOutput is not supported!' input = self.graph.get_input_node(input, idx=0, copy=True) inputs_dict["x{}".format(i)] = input.name params = node.layer.detection_output_param nms_param = params.nms_param nms_param_dict = dict() nms_param_dict["nms_threshold"] = nms_param.nms_threshold nms_param_dict["top_k"] = nms_param.top_k nms_param_dict["eta"] = nms_param.eta if nms_param is None: nms_param_dict = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0} default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0} fields = ["eta", "top_k", "nms_threshold"] for f in default.keys(): if f not in nms_param_dict: nms_param_dict[f] = default[f] layer_attrs = { "background_label": params.background_label_id, "nms_threshold": nms_param_dict["nms_threshold"], "nms_top_k": nms_param_dict["top_k"], "keep_top_k": params.keep_top_k, "score_threshold": params.confidence_threshold, "nms_eta": nms_param_dict["eta"]} self.paddle_graph.add_layer( kernel="custom_layer:DetectionOutput", inputs=inputs_dict, outputs=layer_outputs, **layer_attrs) def Normalize(self, node): normalize_name = name_generator("normalize", self.nn_name2id) output_name = node.layer_name layer_outputs = [normalize_name, output_name] assert len( node.inputs) == 1, "The count of Normalize node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.norm_param param_name = node.layer_name + "_scale" if node.data is None or len(node.data) != 1: print( "The parameter of {} (type is {}) is not set. So we set the parameters as 0" .format(node.layer_name, node.layer_type)) self.params[param_name] = \ np.zeros([1] if params.channel_shared else [node.in_shapes[0][1]]).astype("float32") else: self.params[param_name] = _adjust_parameters(node)[0] self.paddle_graph.add_layer( "self.create_parameter", inputs={}, outputs=[param_name], shape=self.params[param_name].shape, attr=string(param_name)) inputs_dict = {} layer_attrs = { "axis": -1 if params.channel_shared else 1} self.paddle_graph.add_layer( "custom_layer:Normalize", inputs={"x": input.name, "param": param_name}, outputs=layer_outputs, **layer_attrs) def Permute(self, node): assert len( node.inputs) == 1, "The count of Permute node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.permute_param order = list(params.order) self.paddle_graph.add_layer( "paddle.transpose", inputs={"x": input.name}, outputs=[node.layer_name], perm=order) def PriorBox(self, node): priorbox_name = name_generator("priorbox", self.nn_name2id) output_name = node.layer_name layer_outputs = [priorbox_name, output_name] assert len( node.inputs) == 2, "The count of PriorBox node\'s input is not 2." input0 = self.graph.get_input_node(node, idx=0, copy=True) input1 = self.graph.get_input_node(node, idx=1, copy=True) inputs_dict = {} inputs_dict["x0"] = input0.name inputs_dict["x1"] = input1.name params = node.layer.prior_box_param steps = tuple(params.step) if type(params.step) \ is list or type(params.step) is tuple \ else (params.step, params.step) layer_attrs = { "min_sizes": params.min_size, "max_sizes": params.max_size, "aspect_ratios": params.aspect_ratio, "variance": params.variance, "flip": params.flip, "clip": params.clip, "steps": steps, "offset": params.offset, "min_max_aspect_ratios_order": True} self.paddle_graph.add_layer( "custom_layer:PriorBox", inputs=inputs_dict, outputs=layer_outputs, **layer_attrs) def ReLU6(self, node): relu6_name = name_generator("relu6", self.nn_name2id) output_name = node.layer_name layer_outputs = [relu6_name, output_name] assert len( node.inputs) == 1, "The count of RelU6 node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) self.paddle_graph.add_layer( "paddle.nn.ReLU6", inputs={"input": input.name}, outputs=layer_outputs) def ROIPooling(self, node): roipooling_name = name_generator("roipooling", self.nn_name2id) output_name = node.layer_name layer_outputs = [roipooling_name, output_name] assert len( node.inputs) == 2, "The count of ROIPooling node\'s input is not 2." input0 = self.graph.get_input_node(node, idx=0, copy=True) input1 = self.graph.get_input_node(node, idx=1, copy=True) inputs_dict = {} inputs_dict["x0"] = input0.name inputs_dict["x1"] = input1.name params = node.layer.roi_pooling_param layer_attrs = { "pooled_height": params.pooled_h, "pooled_width": params.pooled_w, "spatial_scale": params.spatial_scale} self.paddle_graph.add_layer( "custom_layer:ROIPooling", inputs=inputs_dict, outputs=layer_outputs, **layer_attrs) def ShuffleChannel(self, node): assert len( node.inputs) == 1, "The count of ShuffleChannel node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.shuffle_channel_param self.paddle_graph.add_layer( "paddle.fluid.layers.shuffle_channel", inputs={"x": input.name}, outputs=[node.layer_name], group=params.group) def Upsample(self, node): assert len( node.inputs) == 1, "The count of Upsample node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) params = node.layer.upsample_param layer_attrs = { "align_corners": False, "scale_factor": params.scale, "mode": "nearest"} self.paddle_graph.add_layer( "paddle.nn.functioanl.interpolate", inputs={"input": input.name}, outputs=[node.layer_name], **layer_attrs) def Select(self, node): select_name = name_generator("select", self.nn_name2id) output_name = node.layer_name layer_outputs = [select_name, output_name] assert len( node.inputs) == 1, "The count of Select node\'s input is not 1." input = self.graph.get_input_node(node, idx=0, copy=True) input_shape = node.in_shapes[0] params = node.layer.select_param layer_attrs = { "input_shape": input_shape, "point": params.slice_point, "axis": params.axis} self.paddle_graph.add_layer( "custom_layer:Select", inputs={"x": input.name}, outputs=layer_outputs, **layer_attrs)