import math from collections import namedtuple from .errors import KaffeError Tensor5DShape = namedtuple('Tensor5DShape', ['batch_size', 'data1', 'daat2', 'data3', 'data4']) Tensor4DShape = namedtuple('Tensor4DShape', ['batch_size', 'channels', 'height', 'width']) Tensor3DShape = namedtuple('Tensor3DShape', ['batch_size', 'data1', 'data2']) Tensor2DShape = namedtuple('Tensor2DShape', ['batch_size', 'data']) ScalarShape = namedtuple('ScalarShape', ['batch_size']) def make_tensor(batch_size, d1=None, d2=None, d3=None): if d3 is not None: return Tensor4DShape(batch_size, d1, d2, d3) elif d1 is not None and d2 is not None: return Tensor3DShape(batch_size, d1, d2) elif d1 is not None and d2 is None: return Tensor2DShape(batch_size, d1) elif d1 is None and d2 is None and d3 is None: return ScalarShape(batch_size) else: raise NotImplementedError('invalid params for make_tensor %s' \ % (str((batch_size, d1, d2, d3)))) def get_filter_output_shape(i_h, i_w, params, round_func): dila_h = getattr(params, 'dila_h', 1) dila_w = getattr(params, 'dila_w', 1) o_h = (i_h + 2 * params.pad_h - (dila_h * (params.kernel_h - 1) + 1)) / float(params.stride_h) + 1 o_w = (i_w + 2 * params.pad_w - (dila_w * (params.kernel_w - 1) + 1)) / float(params.stride_w) + 1 return (int(round_func(o_h)), int(round_func(o_w))) def get_strided_kernel_output_shape(node, round_func): assert node.layer is not None input_shape = node.get_only_parent().output_shape o_h, o_w = get_filter_output_shape(input_shape.height, input_shape.width, node.layer.kernel_parameters, round_func) params = node.layer.parameters has_c_o = hasattr(params, 'num_output') c = params.num_output if has_c_o else input_shape.channels return make_tensor(input_shape.batch_size, c, o_h, o_w) def shape_not_implemented(node): raise NotImplementedError def shape_identity(node): assert len(node.parents) > 0 return node.parents[0].output_shape def shape_scalar(node): return make_tensor(1, 1, 1, 1) def shape_crop(node): raise KaffeError('crop function had been defined in customer_layers') def shape_power(node): raise KaffeError('power function had been defined in customer_layers') def shape_data(node): if node.output_shape: # Old-style input specification shape = node.output_shape else: try: # New-style input specification shape = map(int, node.parameters.shape[0].dim) except: # We most likely have a data layer on our hands. The problem is, # Caffe infers the dimensions of the data from the source (eg: LMDB). # We want to avoid reading datasets here. Fail for now. # This can be temporarily fixed by transforming the data layer to # Caffe's "input" layer (as is usually used in the "deploy" version). # TODO: Find a better solution for this. raise KaffeError( 'Cannot determine dimensions of data layer.\n' 'See comments in function shape_data for more info.') return shape def shape_mem_data(node): params = node.parameters return make_tensor(params.batch_size, params.channels, params.height, params.width) def shape_concat(node): axis = node.layer.parameters.axis output_shape = None for parent in node.parents: if output_shape is None: output_shape = list(parent.output_shape) else: output_shape[axis] += parent.output_shape[axis] return tuple(output_shape) def shape_convolution(node): return get_strided_kernel_output_shape(node, math.floor) def shape_deconvolution(node): assert node.layer is not None input_shape = node.get_only_parent().output_shape h_i = input_shape.height w_i = input_shape.width params = node.layer.kernel_parameters p_h = params.pad_h p_w = params.pad_w dila_h = params.dila_h dila_w = params.dila_w k_h = params.kernel_h k_w = params.kernel_w s_h = params.stride_h s_w = params.stride_w h_o = (h_i - 1) * s_h - 2 * p_h + dila_h * (k_h - 1) + 1 w_o = (w_i - 1) * s_w - 2 * p_w + dila_w * (k_w - 1) + 1 params = node.layer.parameters has_c_o = hasattr(params, 'num_output') c = params.num_output if has_c_o else input_shape.channels return make_tensor(input_shape.batch_size, c, h_o, w_o) def shape_pool(node): global_pool = getattr(node.layer.parameters, 'global_pooling', False) if global_pool: input_shape = node.get_only_parent().output_shape return make_tensor(input_shape.batch_size, input_shape.channels, 1, 1) ceil_mode = getattr(node.layer.parameters, 'ceil_mode', True) if ceil_mode is True: method = math.ceil else: method = math.floor return get_strided_kernel_output_shape(node, method) def shape_inner_product(node): input_shape = node.get_only_parent().output_shape return make_tensor(input_shape.batch_size, node.layer.parameters.num_output)